Сочинение на тему роль математики в современном мире

13 вариантов

  1. Роль математики в современном мире
    УДК 510.21(470.638)
    Фадеева Наталья Олеговна,
    старший преподаватель
    кафедры естественно – научных дисциплин
    Северо-Кавказского филиала
    Белгородского государственного
    технического университета им. В.Г. Шухова
    «Разве ты не заметил,
    что способный к математике
    изощрен во всех науках в природе?»
    (Платон)
    Математика в настоящее время перестала быть предметом занятий только научной элиты; теперь занятия математикой привлекают к себе всё большее число одарённых людей. Значительно расширились область математических исследований и применения математического аппарата. Приложения математических методов проникают далеко за пределы собственно математики: в физику, новые отрасли техники, биологию, в экономику и другие социальные науки; без строгой математической логики невозможна работа юриста или менеджера. Информационно – компьютерные технологии способствовали появлению новых областей научных исследований, имеющих, несомненно, чрезвычайно огромное значение как для самой математики, так и для всех наук, непосредственно связанных с ней.
    Для жизни в современном информационном обществе важным является формирование математического стиля мышления, проявляющегося в умении применять индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию. Для того  чтобы уверенно чувствовать себя в современном мире, человек должен уметь проанализировать возникающую проблему, учесть все ее аспекты и сделать правильный выбор. Занятия математикой не столько самоцель, сколько средство к углублённому изучению теории и вместе с тем средство развития мышления, путь к осознанию окружающей действительности, тропинка к пониманию мира.
    Краткий экскурс в историю математики
    Математика
    (греч. mathematike, от mathema — знание, наука) – наука о количественных отношениях и пространственных формах действительного мира.
    (академик Колмогоров А.Н.)
    Ясное понимание самостоятельного положения математики как особой науки, имеющей собственный предмет и метод, стало возможным только после накопления достаточно большого фактического материала и возникло впервые в Древней Греции
    в 6—5 веках до н. э. Развитие математики до этого времени – это период зарождения науки, когда математические исследования имеют дело с весьма ограниченным запасом основных понятий, возникших ещё на очень ранних ступенях исторического развития,  в связи с самыми простыми запросами хозяйственной жизни, сводившимися к счёту предметов, измерению количества продуктов, площадей земельных участков, определению размеров отдельных частей архитектурных сооружений, измерению времени, коммерческим расчётам, навигации и тому подобным. Измерение площадей и объёмов, потребности строительной техники и астрономии вызывают развитие начал геометрии.
    Особое значение для дальнейшего развития науки имело накопление арифметических и геометрических знаний в Египте и Вавилоне. В Вавилоне на основе развитой техники арифметических вычислений появились также начала алгебры, а в связи с запросами астрономии — начала тригонометрии.  Развитие геодезии и астрономии рано приводит к детальной разработке тригонометрии, как плоской, так и сферической.
    Первый век александрийской эпохи (3 век до н.э.) – век  наибольшей напряжённости математического творчества. Этому веку принадлежат Евклид, Архимед, Эратосфен. В своих «Началах» Евклид собрал и логически переработал достижения предыдущего периода в области геометрии, а также впервые заложил основы систематической теории чисел. Из геометрических работ Евклида наибольшее значение имело создание законченной теории конических сечений. Главная заслуга Архимеда в геометрии – определение разнообразных площадей и объёмов (в том числе площадей параболического сегмента и поверхности шара, объёмов шара, шарового сегмента, сегмента параболоида и т. д.) и центров тяжести.
    Большое развитие математические исследования получили в Древнем Китае. Уже во 2—1 веках до н. э. у китайских математиков имелась блестящая техника вычислений. В труде «Арифметика в девяти главах», составленном Чжан Цаном и Цзин Чоу-чаном,  описываются, в частности, способы извлечения квадратных и кубических корней из целых чисел. Пример высокого развития вычислительных методов в геометрии – результат Цзу Чун-чжи (2-я половина 5 века), доказавшего, что отношение длины окружности к диаметру лежит в пределах
    3,1415926 < ? < 3,1415927. Особенно значимы работы учёных Древнего Китая по численному решению уравнений. Геометрические задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я половина 7 века). Расцвет индийской математики относится к 5—12 векам (наиболее известны индийские математики Ариабхата, Брахмагупта, Бхаскара). Индийцам принадлежат две основные заслуги: введение в широкое употребление современной десятичной системы счисления, систематическое употребление нуля для обозначения отсутствия единиц данного разряда и создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. В тригонометрии заслугой индийских математиков явилось введение линий синуса и косинуса. Огромен вклад в развитие математической науки учёных, писавших на арабском языке: хорезмийских, узбекских, таджикских и азербайджанских.  В 1-й половине 9 века Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоятельной науки в своём сочинении «Аль-джебр», по которому европейские математики раннего средневековья познакомились с решением квадратных уравнений. Поэт, астроном и математик Омар Хайям систематизировал и классифицировал уравнения третьей степени, выяснил условия их разрешимости (в смысле существования положительных корней). Большое развитие в арабских странах получила тригонометрия: Аль-Баттани ввёл в употребление тригонометрические функции: синус, тангенс и котангенс, Абу-ль-Вефа — все шесть тригонометрических функций. Годы 12—15 веков для западноевропейской математики - период усвоения математического наследства древнего мира и Востока. Основными центрами теоретической научной мысли в это время становятся европейские университеты. Прогресс алгебры как теоретической дисциплины, а не только собрания практических правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [английский математик Т. Брадвардин (1-я половина 14 века) и Н. Орем (середина 14 века)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [французский математик Н. Шюке (конец 15 века)] показателей степеней. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греческих и арабских авторов, но и в таких начинаниях, как составление обширных тригонометрических таблиц, вычисленных с точностью до седьмого знака И. Мюллером. Значительно совершенствуется в эти годы математическая символика. XVI век - это век начинающегося превосходства в развитии науки Западной Европы над древним миром и Востоком:  в астрономии (открытие Н. Коперника),   в механике (к концу этого столетия уже появляются первые исследования Г. Галилея) и в математике (Дж. Кардано исследовал уравнения третьей степени, в котором действительные корни уравнения выражаются комплексно; Ф. Виет основал настоящее алгебраическое буквенное исчисление (1591); учение о перспективе в геометрии  изложил немецкий художник А. Дюрер (1525);  С. Стевин разработал (1585) правила арифметических действий с десятичными дробями). В России в 9—13 веках математическое образование находилось на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились рукописные руководства по арифметике, геометрии, в которых излагались сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.). Наиболее древнее российское математическое произведение относится к 1136 году и принадлежит новгородскому монаху Кирику. В нём приводятся арифметико-хронологические расчёты для решения сложной задачи ежегодного вычисления дня праздника пасхи. Геометрические рукописи, преследовавшие практические цели, содержали изложение правил определения площадей фигур и объёмов тел, часто приближённые. В 1703 году издана знаменитая «Арифметика» Л. Ф. Магницкого. С 17 века начинается существенно новый период развития математики. На первый план выдвигается понятие функции. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в математику в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла. Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений, и задача интегрирования этих уравнений - одна из важнейших задач математики. Отыскание неизвестных функций, определённых другого рода условиями - предмет вариационного исчисления. В геометрии был найден универсальный способ перевода задач на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, поэтому открылась широкая возможность иллюстрирования алгебраических и аналитических фактов геометрически, например, при графическом изображении функциональных зависимостей Математические достижения 17 века начинаются открытием логарифмов (Дж. Непер, опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою «Геометрию», содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. Свойства простейших рядов, начиная с геометрической прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение In(1 + x) в степенной ряд. И. Ньютон нашёл (1665—69) формулу бинома для любого показателя, степенные ряды функций ex, sinx, arcsinx. В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 века (Дж. Валлис, Х. Гюйгенс, Г. Лейбниц, Я. Бернулли и другие).  К последней трети 17 века относится открытие дифференциального и интегрального исчисления в собственном смысле слова. Создание новой математики переменных величин в 17 веке - дело учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница, но в 18 веке одним из основных центров научных математических исследований становится Петербургская академия наук, где работал ряд крупнейших математиков того времени (Л. Эйлер, Д. Бернулли) и складывается русская математическая школа. Если виднейшие математики 17 века очень часто были в то же время философами или физиками-экспериментаторами, то в 18 веке научная работа математика становится самостоятельной профессией. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематической науки. Ж. Лагранж дал  общее решение неопределённых уравнений второй степени. Л. Эйлер установил закон взаимности для квадратичных вычетов. Он же привлек для изучения простых чисел дзета-функцию, чем положил начало аналитической теории чисел. При помощи разложений в непрерывные дроби Л. Эйлер доказал иррациональность е и e2, а И. Ламберт  — иррациональность числа ?. В алгебре Г. Крамер ввёл для решения систем линейных уравнений определители. Накопленный в 17 и 18 веках огромный фактический материал привёл к необходимости углублённого логического анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрической интерпретации комплексных чисел, доказательство неразрешимости в радикалах общего алгебраического уравнения пятой степени, разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским  неевклидовой геометрии, работы К. Гаусса по внутренней геометрии поверхностей — типичные примеры наметившихся на рубеже 18 и 19 веков новых тенденций в развитии математики. Все созданные в 17 и 18 веках разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 веках,  их развитие продолжается и в наши дни. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естественными науками и развивающейся техникой. От теории – к практике Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности. Принципиально область применения математического метода не ограничена: все виды движения материи могут изучаться математически. «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей. В биологических науках математический метод играет более подчинённую роль. В ещё большей степени, чем в биологии, математический метод уступает своё место непосредственному анализу явлений во всей их конкретной сложности в социальных и гуманитарных науках. Применение математического метода в биологических, социальных и гуманитарных науках осуществляется главным образом через информационно-компьютерные технологии. Существенным остаётся значение математики для социальных дисциплин  в форме подсобной науки — математической статистики. Можно также утверждать, что в экономической науке не должно быть деления на «экономику» и «математику». Основная масса статей по экономике, так или иначе, использует математический аппарат. Либо это описание модели, либо эмпирическая проверка обсуждаемых гипотез или явлений средствами корреляционного или регрессионного анализа, либо удобная система обозначений, позволяющая в дальнейшем легко формулировать изучаемые отношения на количественном языке. Но количественное описание экономических законов средствами математики и статистики требует использования более сложного математического инструментария и в большинстве случаев оказывается более сложной задачей, чем описание законов природы. Многие экономические явления, например, развитие фондовых рынков или инфляция, хорошо описываются при помощи математического аппарата теории хаоса или законов, которым подчиняется поведение динамических систем. И сейчас актуальны слова классика математической экономики Парето: «Экономисты, не знающие математики, находятся в положении людей, желающих решить систему уравнений, не зная ни того, что она из себя представляет, ни того даже, что представляет из себя каждое входящее в нее единичное уравнение». На примере ряда физических теорий можно наблюдать способность математического метода охватывать и самый процесс перехода познания действительности с одной ступени на следующую. Почти не существует области физики, не требующей употребления весьма развитого математического аппарата, но часто основная трудность исследования заключается не в развитии математической теории, а в выборе предпосылок для математической обработки и в истолковании результатов, полученных математическим путём. Американский исследователь Ф. Дайсон пишет: "Математика для физики - это не только инструмент, с помощью которого она может количественно описать явление, но и главный источник представлений и принципов, на основе которых зарождаются новые теории". Прямые связи математики с техникой имеют характер применения уже созданных математических теорий к техническим проблемам. Создание метода наименьших квадратов связано с геодезическими работами; изучение многих новых типов дифференциальных уравнений в частных производных было начато с решения технических проблем; операторные методы решения дифференциальных уравнений были развиты в связи с электротехникой. Из запросов связи возник новый раздел теории вероятностей — теория информации. Задачи синтеза управляющих систем привели к развитию новых разделов математической логики. Наряду с нуждами астрономии решающую роль в развитии методов приближённого решения дифференциальных уравнений играли технические задачи. Целиком на технической почве были созданы многие методы приближённого решения дифференциальных уравнений в частных производных и интегральных уравнений. Задача быстрого фактического получения численных решений приобретает большую остроту с усложнением технических проблем. В связи с возможностями, которые открыли компьютеры для решения практических задач, всё большее значение приобретают численные методы. Высокий уровень теоретической математики дал возможность быстро развить методы вычислительной математики. Вычислительная математика сыграла большую роль в решении ряда крупнейших практических проблем, включая проблему использования атомной энергии и космические исследования. Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых, прежде всего в механике, астрономии, физике, то современный её язык - это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая. Выдающийся учёный Н. Винер – в 1945–1947 заинтересовался системами с обратной связью и проблемами передачи, хранения и переработки информации. Новую науку – общую теорию управления и связи – он назвал кибернетикой. В своей книге, подводившей итог жизни, и названной «Я – математик» Винер сказал: «Высшее назначение математики состоит в том, чтобы  находить скрытый порядок в хаосе, который нас окружает». Современные создатели компьютерных программ отчётливо осознают, что без знания математического аппарата их работа невозможна. Опрос программистов, проведённый на сайте CyberForum.ru  показал, что подавляющее большинство (91 %) программистов  применяют или применяли математику в программировании. Может возникнуть вопрос: «А присутствует ли математика в архитектуре?».   Достаточно взглянуть на здания, и мы тут же увидим знакомые геометрические фигуры: параллелепипед, треугольные фронтоны, полукруглые и прямоугольные окна.… И это лишь малая часть геометрических фигур, которые радуют глаз при взгляде на красивые здания и сооружения. До определенного момента в истории  математика и архитектура развивались в тесной взаимосвязи. В XVIII веке математика и архитектура начинают развиваться параллельно. Изобретение компьютера послужило отправной точкой для повторного проникновения математики в архитектуру. В это же время выясняется, что уже давно существует некий параллелизм их языков: по-разному формулируются одни и те же проблемы. То есть разрыв между дисциплинами ни к чему не привел и гораздо выгоднее восстановить существовавшие прежде связи, нежели поддерживать искусственное разделение - то есть шире использовать математические методы в архитектурном проектировании. Математика используется, в том числе, и для решения строительных задач. Конечно, существуют сложные строительные задачи – такие, например, как расчет прочности несущих элементов здания. Здесь могут применяться громоздкие математические формулы, объемные таблицы сопротивления материалов и емкие расчеты. Но существуют более простые задачи, с которыми сталкивается буквально каждый строитель – практик. Например, широко известна строительная задача, которую с успехом решает математика. Одним из самых важных условий при постройке нового дома всегда было правильно разметить углы. Но как получить прямой угол? Ответ на этот вопрос дал греческий математик Пифагор, сформулировав и доказав свою известную теорему. С тех пор задача разметки углов в профессиональном строительстве решается именно через прямоугольный треугольник. Еще одна строительная задача, при решении которой применяется математика – замер площадей сложной формы. Допустим, есть зал с большим количеством ниш, и в некоторых местах стены соприкасаются не под прямым углом. Требуется застелить пол зала каким – либо материалом. Но чтобы заказать нужное количество материала, необходимо знать площадь пола. Математика решает эту задачу путем разделения сложной фигуры на прямоугольники и треугольники. После вычисления их площадей, полученные значения суммируются. С развитием технологий математика начинает влиять и на процессы проектирования и строительства. Так  В. Г. Шухов (имя которого носит университет) был блестящим математиком. Виртуозное соединение научных поисков с практическими знаниями во многих областях техники и технологии позволили Шухову сделать множество открытий и изобретений. Уникальным достижением, демонстрирующим победоносный союз науки и производства, была выставка в Нижнем Новгороде 1896 года. Строительной фирмой, главным инженером которой в то время был В.Г. Шухов, построено 8 павильонов, общей площадью 25 тыс.м2. Конструкции каждого павильона уникальны, ни одного повторяющегося решения не позволил себе великий инженер. На примере этих построек можно говорить о формообразующей роли математики. Идя от математических формул, Шухов пришел к конструктивно совершенным и легким строительным конструкциям. Творчество В. Г. Шухова — пример уникального синтеза теоретических и практических задач. рис. 1 В 1913-1917 годах, над перронами Киевского вокзала сооружен красивый навес из 31 арки высотой  более 28 м ( современное фото) рис. 2 Гиперболоидные мачты броненосца «Император Павел I», Кронштадт. (фото 1912 г.) рис. 3 Вид работ по строительству одного из павильонов Нижегородской выставки (фото1895 г.) рис. 4 Вид на павильоны Нижегородской выставки (фото1896 г.) Математика и математическое образование в современном мире Опыт предыдущих поколений и прикладная роль математики в различных областях человеческой деятельности предопределяют особый статус математики в современном естествознании. По итогам ЕГЭ 2010 5,1% выпускников российских школ не смогли сдать экзамен по математике, только 157 человек из 970 000 набрали высший балл. Такие результаты говорят о серьёзности ситуации с изучением данного предмета, и не только в средней школе. Вопрос о пользе проведения выпускного экзамена в форме ЕГЭ и сегодня остается открытым. Математическое сообщество несет свою долю ответственности за повсеместно наблюдаемое давление со стороны правительства и общества в целом, направленное на уничтожение математической культуры как части культурного багажа каждого человека и, в особенности на уничтожение математического образования. Выхолощенное и формализованное изучение математики на всех уровнях сделалось, к несчастью, системой. В истории России был премьер-министр с математическим образованием: окончивший Санкт-Петербургский университет по курсу математике в школе П.Л. Чебышева - граф Витте. Стиль работы Витте по руководству Кабинетом министров заключался вовсе не в применении какой-либо математики ("исчисления"), а в том способе мышления, который он сам называл "математикой-философией" и который заставляет человека с математическим образованием думать обо всех реалиях окружающего мира с помощью (сознательного или бессознательного) математического моделирования. Витте отлично разбирался в реальной жизни страны и в проблемах экономики и техники. С его именем связана вся грандиозная эпоха "развития капитализма в России", в том числе - строительство действующей и сейчас сети железных дорог. Математическое образование должно составлять неотъемлемую часть культурного багажа каждого человека, но, к сожалению, в настоящее время, повсеместно наблюдается отвращение к математике руководителей различных уровней, стремление отомстить за перенесенные в школе «унижения» уничтожением математических знаний. А ведь ещё древнегреческий философ Платон говорил: «Было бы хорошо, если бы эти знания требовало само государство и если бы лиц, занимающих высшие государственные должности, приучали заниматься математикой и в нужных случаях к ней обращаться . ( из сочинения «Государство»  370-360 г. до н.э.) Литература Колмогоров А. Н., Математика. //Математический энциклопедический словарь. – М. СЭ, 1988; Юшкевич А. П., История математики в средние века, М., 1961; Рыбников К. А., История математики, т. 1—2, М., 1960—63; Бурбаки Н., Очерки по истории математики, перевод с французского, М., 1963; Курант Р., Вступительная статья к сборнику «Математика в современном мире» М., Мир, 1967; Винер Н., «Я – математик» изд.2, - М. Наука, 1967; Гильде В. Зеркальный мир. - М., Мир, 2007; Курант Р., Роббинс Г. Что такое математика? - М., Просвещение, 2007; Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005; Фирсов В.В. О прикладной ориентации курса математики. Статья в журн. «Математика в  школе» № 6-7 -2006. Использованы материалы сайтов: http://gorod.tomsk.ru;
    http://ru.wikipedia.org;
    http://www.mmonline.ru;
    http://www.cultinfo.ru;
    http://www.cyberforum.ru;
    http://khpi-iip.mipk.kharkiv.edu.
    http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika
    УДК 510.21(470.638)
    Фадеева Наталья Олеговна, старший преподаватель кафедры естественно – научных дисциплин Северо-Кавказского филиала Белгородского государственного технического университета им. В.Г. Шухова.
    В предлагаемой статье рассматривается прикладная роль математики для специальностей, по которым ведет подготовку вуз. Работа содержит краткий экскурс в историю развития математики с древности до наших дней. Поднимаются проблемы математического образования в современном обществе.

  2. Математика дает людям мощные методы изучения и понимания окружающего мира, методы исследования как теоретических, так и чисто практических проблем.
    Переводя экономическую, транспортную, управленческую или любую другую задачу на математический язык, современный специалист получает возможность использовать для ее решения все разнообразие и богатство средств математики. Результаты, полученные с помощью математических методов экономико-математического анализа, позволяют подтвердить или опровергнуть выдвинутую гипотезу, построить прогноз, составить оптимальный план функционирования практически действующего объекта.
    Математика предлагает весьма общие и достаточно четкие логические модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей других наук. Объектами исследования математики служат логические модели, построенные для описания явлений в природе, технике, обществе. Математической моделью изучаемого объекта (явления, процесса и т.п.) называется логическая конструкция, отражающая геометрические формы этого объекта и количественные соотношения между его числовыми параметрами. При этом математическая модель, отображая и воспроизводя те или иные стороны рассматриваемого объекта, способна замещать его так, что исследование модели даст новую информацию об этом объекте, опирающуюся на принципы математической теории, на сформулированные математическим языком законы природы. Если математическая модель верно отражает суть данного явления, то она позволяет находить и необнаруженные ранее закономерности, давать математический анализ условий, при которых возможно решение теоретических или практических задач, возникающих при исследовании этого явления. Такие модели формулируются на особом языке – языке чисел, различных символов.
    Современная математика в сочетании с информатикой становится как бы междисциплинарным инструментарием, который выполняет две основные функции: первую – обучающую специалиста-профессионала умению правильно задавать цель тому или иному процессу, определить условия и ограничения в достижении цели; вторую – аналитическую, т.е. «проигрывание» на моделях возможных ситуаций и получение оптимальных решений.
    Причина, по которой без математических методов сейчас не обходится не только техника, механика, электроника, экономика, но и медицина, экология, психология, социология, лингвистика, история, юриспруденция и др., проста – для математических методов характерны:
    четкость формулировок и определений;
    использование точных количественных оценок;
    логическая строгость;
    сочетание индуктивного и дедуктивного подходов;
    универсальность.
    Использование математических методов формирует так называемый математический стиль мышления, т.е. абстрактный, логический, идеально строгий и – самое главное – нацеленный на поиск закономерностей. Профессионал, грамотно и аккуратно применяющий математические методы, способен принести пользу в любой сфере деятельности, в том числе и правовой.

  3. ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ
    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
    « РОССИЙСКАЯ ПРАВОВАЯ АКАДЕМИЯ
    МИНИСТЕРСТВА ЮСТИЦИИ РОССИЙСКОЙ ФЕДЕРАЦИИ »
    (РПА Минюста России)
    Юридический факультет
    Реферат
    «Роль математики в современном мире
    »
    Выполнил студент
    1 курса
    Очной формы обучения
    Масляев Алексей Владимирович
    Научный руководитель
    Крылов Григорий Олегович
    Преподаватель кафедры

    Москва 2010
    СОДЕРЖАНИЕ
    1. Содержание
    2. Введение
    3. Определения математики
    4. Основные этапы развития математики
    5. Роль математики в современном мире.
    6. В науке
    7. В развитии человеческого мышления
    8. В познании мира и самого себя
    9. В медицине
    10.Роль математики в юриспруденции
    11.Заключение
    12.Источники
    ВВЕДЕНИЕ
    Математика является экспериментальной наукой – частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса – каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений, сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.
    “No star wars – no mathematics”, – говорятамериканцы. Тот прискорбный факт, что с прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только “прикладные” науки.
    Ведь опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей (английский физик, химик и физик, химик, основоположник учения об электромагнитном поле) и Максвелл (заложил основы современной классической электродинамики и многое другое) написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету – удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и следовательно экономической (а также и военной) отсталостью. Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях эколого-экономического кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран.
    В настоящее время математика пропитывает насквозь всю нашу жизнь. Мы уже не представляем мир без всех многочисленных технических средств и приспособлений. А они каждый день совершенствуются. То, что еще 10 лет назад казалось фантастикой сейчас уже реальность. Кто-то скажет, что это заслуга различный прикладных наук, но он будет ошибаться, так как без математики ничего бы этого не было.

    ОПРЕДЕЛЕНИЕ МАТЕМАТИКИ

    Математика
    – область человеческого знания, изучающая математические модели, отражающие объективные свойства и связи. “Замечательно, – пишет В.А. Успенский, – что хотя математическая модель создается человеческим разумом, она, будучи создана, может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальности” Кроме того, математика дает удобные способы описания самых разнообразных явлений реального мира и тем самым выполняет роль языка науки. Наконец, математика дает людям методы изучения и познания окружающего мира, методы исследования как теоретических, так и практических проблем.

    Математика
    (греч. mathematike, от mathema – знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.

    Современное понятие математики
    – наука о математических структурах (множествах, между элементами которых определены некоторые отношения).

    У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.

    “Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира” (Ф. Энгельс).

    “Математика – наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной.

    Математика делится на арифметику и геометрию; первая располагает цифрами, вторая – протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа” (В. Даль).

    Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.

    ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ МАТЕМАТИКИ
    В истории математики традиционно выделяются несколько этапов развития математических знаний:
    1. Формирование понятия геометрические фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.
    2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские , китайские и индийские математики древности.
    3. Появление в древней Греции математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклидаhttp://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%B0_%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%B0.
    4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.
    5. В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной, и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости (функция) и ускоренного движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.
    6. В XIX—XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»: найти причину «непостижимой эффективности математики в естественных науках». В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.
    В НАУКЕ
    Известно, что математика никогда не бывает одна, она всегда к чему-то
    прикладывается! Это говорит о том, что ни одна другая наука не может существовать без математики. Следовательно, если бы человечество не создало мира математики, то оно никогда не смогло бы обладать НАУКОЙ !!!
    Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие. Исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.
    Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше!
    Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.
    Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы – логика и интуиция, анализ и конструкция, общность и конкретность.
    В ИНТЕЛЕКТУАЛЬНОМ РАЗВИТИИ ЛИЧНОСТИ
    В современной науке под образованием обычно понимают систему знаний, навыков, овладение которыми обеспечивает развитие интеллектуальных и духовных способностей личности, формирование основ её мировоззрения и морали, подготовку молодого человека к жизни и труду.
    На рубеже XX и XXI в.в. оно стало наиболее важной фундаментальной проблемой, ибо по утверждению немецкого философа М. Шелера, “Когда в трудной борьбе за новый мир новый человек дерзает создавать новые формы, центральной становится проблема образования человека”1 . Образование – проективный процесс, всей своей сущностью оно устремлено в будущее. Образование – это важнейший механизм развития не только индивида, но и общества в целом, механизм, направленный на формирование и развертывание физического, интеллектуального и духовного потенциалов общества в их различных видах и формах.

  4. Роль математики в современном мире
    «Разве ты не заметил, что способный к математике изощрен во всех науках в природе?» (Платон)
    Математика в настоящее время перестала быть предметом занятий только научной элиты; теперь занятия математикой привлекают к себе всё большее число одарённых людей. Значительно расширились область математических исследований и применения математического аппарата. Приложения математических методов проникают далеко за пределы собственно математики: в физику, новые отрасли техники, биологию, в экономику и другие социальные науки; без строгой математической логики невозможна работа юриста или менеджера. Информационно – компьютерные технологии способствовали появлению новых областей научных исследований, имеющих, несомненно, чрезвычайно огромное значение как для самой математики, так и для всех наук, непосредственно связанных с ней. математика технический образование
    Для жизни в современном информационном обществе важным является формирование математического стиля мышления, проявляющегося в умении применять индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию. Для того чтобы уверенно чувствовать себя в современном мире, человек должен уметь проанализировать возникающую проблему, учесть все ее аспекты и сделать правильный выбор. Занятия математикой не столько самоцель, сколько средство к углублённому изучению теории и вместе с тем средство развития мышления, путь к осознанию окружающей действительности, тропинка к пониманию мира.
    Краткий экскурс в историю математики
    Математика (греч. mathematike, от mбthema — знание, наука) – наука о количественных отношениях и пространственных формах действительного мира. (академик Колмогоров А.Н.)
    Ясное понимание самостоятельного положения математики как особой науки, имеющей собственный предмет и метод, стало возможным только после накопления достаточно большого фактического материала и возникло впервые в Древней Греции в 6–5 веках до н. э.
    Развитие математики до этого времени – это период зарождения науки, когда математические исследования имеют дело с весьма ограниченным запасом основных понятий, возникших ещё на очень ранних ступенях исторического развития, в связи с самыми простыми запросами хозяйственной жизни, сводившимися к счёту предметов, измерению количества продуктов, площадей земельных участков, определению размеров отдельных частей архитектурных сооружений, измерению времени, коммерческим расчётам, навигации и тому подобным. Измерение площадей и объёмов, потребности строительной техники и астрономии вызывают развитие начал геометрии.
    Особое значение для дальнейшего развития науки имело накопление арифметических и геометрических знаний в Египте и Вавилоне. В Вавилоне на основе развитой техники арифметических вычислений появились также начала алгебры, а в связи с запросами астрономии — начала тригонометрии. Развитие геодезии и астрономии рано приводит к детальной разработке тригонометрии, как плоской, так и сферической.
    Первый век александрийской эпохи (3 век до н.э.) – век наибольшей напряжённости математического творчества. Этому веку принадлежат Евклид, Архимед, Эратосфен. В своих «Началах» Евклид собрал и логически переработал достижения предыдущего периода в области геометрии, а также впервые заложил основы систематической теории чисел. Из геометрических работ Евклида наибольшее значение имело создание законченной теории конических сечений. Главная заслуга Архимеда в геометрии – определение разнообразных площадей и объёмов (в том числе площадей параболического сегмента и поверхности шара, объёмов шара, шарового сегмента, сегмента параболоида и т. д.) и центров тяжести.
    Большое развитие математические исследования получили в Древнем Китае. Уже во 2–1 веках до н. э. у китайских математиков имелась блестящая техника вычислений. В труде «Арифметика в девяти главах», составленном Чжан Цаном и Цзин Чоу-чаном, описываются, в частности, способы извлечения квадратных и кубических корней из целых чисел. Пример высокого развития вычислительных методов в геометрии – результат Цзу Чун-чжи (2-я половина 5 века), доказавшего, что отношение длины окружности к диаметру лежит в пределах 3,1415926 < р < 3,1415927. Особенно значимы работы учёных Древнего Китая по численному решению уравнений. Геометрические задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я половина 7 века). Расцвет индийской математики относится к 5--12 векам (наиболее известны индийские математики Ариабхата, Брахмагупта, Бхаскара). Индийцам принадлежат две основные заслуги: введение в широкое употребление современной десятичной системы счисления, систематическое употребление нуля для обозначения отсутствия единиц данного разряда и создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. В тригонометрии заслугой индийских математиков явилось введение линий синуса и косинуса. Огромен вклад в развитие математической науки учёных, писавших на арабском языке: хорезмийских, узбекских, таджикских и азербайджанских. В 1-й половине 9 века Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоятельной науки в своём сочинении «Аль-джебр», по которому европейские математики раннего средневековья познакомились с решением квадратных уравнений. Поэт, астроном и математик Омар Хайям систематизировал и классифицировал уравнения третьей степени, выяснил условия их разрешимости (в смысле существования положительных корней). Большое развитие в арабских странах получила тригонометрия: Аль-Баттани ввёл в употребление тригонометрические функции: синус, тангенс и котангенс, Абу-ль-Вефа -- все шесть тригонометрических функций. Годы 12--15 веков для западноевропейской математики - период усвоения математического наследства древнего мира и Востока. Основными центрами теоретической научной мысли в это время становятся европейские университеты. Прогресс алгебры как теоретической дисциплины, а не только собрания практических правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [английский математик Т. Брадвардин (1-я половина 14 века) и Н. Орем (середина 14 века)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [французский математик Н. Шюке (конец 15 века)] показателей степеней. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греческих и арабских авторов, но и в таких начинаниях, как составление обширных тригонометрических таблиц, вычисленных с точностью до седьмого знака И. Мюллером. Значительно совершенствуется в эти годы математическая символика. XVI век - это век начинающегося превосходства в развитии науки Западной Европы над древним миром и Востоком: в астрономии (открытие Н. Коперника), в механике (к концу этого столетия уже появляются первые исследования Г. Галилея) и в математике (Дж. Кардано исследовал уравнения третьей степени, в котором действительные корни уравнения выражаются комплексно; Ф. Виет основал настоящее алгебраическое буквенное исчисление (1591); учение о перспективе в геометрии изложил немецкий художник А. Дюрер (1525); С. Стевин разработал (1585) правила арифметических действий с десятичными дробями). В России в 9--13 веках математическое образование находилось на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15--16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились рукописные руководства по арифметике, геометрии, в которых излагались сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.). Наиболее древнее российское математическое произведение относится к 1136 году и принадлежит новгородскому монаху Кирику. В нём приводятся арифметико-хронологические расчёты для решения сложной задачи ежегодного вычисления дня праздника пасхи. Геометрические рукописи, преследовавшие практические цели, содержали изложение правил определения площадей фигур и объёмов тел, часто приближённые. В 1703 году издана знаменитая «Арифметика» Л. Ф. Магницкого. С 17 века начинается существенно новый период развития математики. На первый план выдвигается понятие функции. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в математику в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла. Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений, и задача интегрирования этих уравнений - одна из важнейших задач математики. Отыскание неизвестных функций, определённых другого рода условиями - предмет вариационного исчисления. В геометрии был найден универсальный способ перевода задач на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, поэтому открылась широкая возможность иллюстрирования алгебраических и аналитических фактов геометрически, например, при графическом изображении функциональных зависимостей Математические достижения 17 века начинаются открытием логарифмов (Дж. Непер, опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою «Геометрию», содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. Свойства простейших рядов, начиная с геометрической прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение In(1 + x) в степенной ряд. И. Ньютон нашёл (1665--69) формулу бинома для любого показателя, степенные ряды функций ex, sinx, arcsinx. В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 века (Дж. Валлис, Х. Гюйгенс, Г. Лейбниц, Я. Бернулли и другие). К последней трети 17 века относится открытие дифференциального и интегрального исчисления в собственном смысле слова. Создание новой математики переменных величин в 17 веке - дело учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница, но в 18 веке одним из основных центров научных математических исследований становится Петербургская академия наук, где работал ряд крупнейших математиков того времени (Л. Эйлер, Д. Бернулли) и складывается русская математическая школа. Если виднейшие математики 17 века очень часто были в то же время философами или физиками-экспериментаторами, то в 18 веке научная работа математика становится самостоятельной профессией. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематической науки. Ж. Лагранж дал общее решение неопределённых уравнений второй степени. Л. Эйлер установил закон взаимности для квадратичных вычетов. Он же привлек для изучения простых чисел дзета-функцию, чем положил начало аналитической теории чисел. При помощи разложений в непрерывные дроби Л. Эйлер доказал иррациональность е и e2, а И. Ламберт -- иррациональность числа р. В алгебре Г. Крамер ввёл для решения систем линейных уравнений определители. Накопленный в 17 и 18 веках огромный фактический материал привёл к необходимости углублённого логического анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрической интерпретации комплексных чисел, доказательство неразрешимости в радикалах общего алгебраического уравнения пятой степени, разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским неевклидовой геометрии, работы К. Гаусса по внутренней геометрии поверхностей -- типичные примеры наметившихся на рубеже 18 и 19 веков новых тенденций в развитии математики. Все созданные в 17 и 18 веках разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 веках, их развитие продолжается и в наши дни. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естественными науками и развивающейся техникой. От теории - к практике Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности. Принципиально область применения математического метода не ограничена: все виды движения материи могут изучаться математически. «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей. В биологических науках математический метод играет более подчинённую роль. В ещё большей степени, чем в биологии, математический метод уступает своё место непосредственному анализу явлений во всей их конкретной сложности в социальных и гуманитарных науках. Применение математического метода в биологических, социальных и гуманитарных науках осуществляется главным образом через информационно-компьютерные технологии. Существенным остаётся значение математики для социальных дисциплин в форме подсобной науки -- математической статистики. Можно также утверждать, что в экономической науке не должно быть деления на «экономику» и «математику». Основная масса статей по экономике, так или иначе, использует математический аппарат. Либо это описание модели, либо эмпирическая проверка обсуждаемых гипотез или явлений средствами корреляционного или регрессионного анализа, либо удобная система обозначений, позволяющая в дальнейшем легко формулировать изучаемые отношения на количественном языке. Но количественное описание экономических законов средствами математики и статистики требует использования более сложного математического инструментария и в большинстве случаев оказывается более сложной задачей, чем описание законов природы. Многие экономические явления, например, развитие фондовых рынков или инфляция, хорошо описываются при помощи математического аппарата теории хаоса или законов, которым подчиняется поведение динамических систем. И сейчас актуальны слова классика математической экономики Парето: «Экономисты, не знающие математики, находятся в положении людей, желающих решить систему уравнений, не зная ни того, что она из себя представляет, ни того даже, что представляет из себя каждое входящее в нее единичное уравнение». На примере ряда физических теорий можно наблюдать способность математического метода охватывать и самый процесс перехода познания действительности с одной ступени на следующую. Почти не существует области физики, не требующей употребления весьма развитого математического аппарата, но часто основная трудность исследования заключается не в развитии математической теории, а в выборе предпосылок для математической обработки и в истолковании результатов, полученных математическим путём. Американский исследователь Ф. Дайсон пишет: "Математика для физики - это не только инструмент, с помощью которого она может количественно описать явление, но и главный источник представлений и принципов, на основе которых зарождаются новые теории". Прямые связи математики с техникой имеют характер применения уже созданных математических теорий к техническим проблемам. Создание метода наименьших квадратов связано с геодезическими работами; изучение многих новых типов дифференциальных уравнений в частных производных было начато с решения технических проблем; операторные методы решения дифференциальных уравнений были развиты в связи с электротехникой. Из запросов связи возник новый раздел теории вероятностей -- теория информации. Задачи синтеза управляющих систем привели к развитию новых разделов математической логики. Наряду с нуждами астрономии решающую роль в развитии методов приближённого решения дифференциальных уравнений играли технические задачи. Целиком на технической почве были созданы многие методы приближённого решения дифференциальных уравнений в частных производных и интегральных уравнений. Задача быстрого фактического получения численных решений приобретает большую остроту с усложнением технических проблем. В связи с возможностями, которые открыли компьютеры для решения практических задач, всё большее значение приобретают численные методы. Высокий уровень теоретической математики дал возможность быстро развить методы вычислительной математики. Вычислительная математика сыграла большую роль в решении ряда крупнейших практических проблем, включая проблему использования атомной энергии и космические исследования. Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых, прежде всего в механике, астрономии, физике, то современный её язык - это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая. Выдающийся учёный Н. Винер - в 1945-1947 заинтересовался системами с обратной связью и проблемами передачи, хранения и переработки информации. Новую науку - общую теорию управления и связи - он назвал кибернетикой. В своей книге, подводившей итог жизни, и названной «Я - математик» Винер сказал: «Высшее назначение математики состоит в том, чтобы находить скрытый порядок в хаосе, который нас окружает». Современные создатели компьютерных программ отчётливо осознают, что без знания математического аппарата их работа невозможна. Опрос программистов, проведённый на сайте CyberForum.ru показал, что подавляющее большинство (91 %) программистов применяют или применяли математику в программировании. Может возникнуть вопрос: «А присутствует ли математика в архитектуре?». Достаточно взглянуть на здания, и мы тут же увидим знакомые геометрические фигуры: параллелепипед, треугольные фронтоны, полукруглые и прямоугольные окна.… И это лишь малая часть геометрических фигур, которые радуют глаз при взгляде на красивые здания и сооружения. До определенного момента в истории математика и архитектура развивались в тесной взаимосвязи. В XVIII веке математика и архитектура начинают развиваться параллельно. Изобретение компьютера послужило отправной точкой для повторного проникновения математики в архитектуру. В это же время выясняется, что уже давно существует некий параллелизм их языков: по-разному формулируются одни и те же проблемы. То есть разрыв между дисциплинами ни к чему не привел и гораздо выгоднее восстановить существовавшие прежде связи, нежели поддерживать искусственное разделение - то есть шире использовать математические методы в архитектурном проектировании. Математика используется, в том числе, и для решения строительных задач. Конечно, существуют сложные строительные задачи - такие, например, как расчет прочности несущих элементов здания. Здесь могут применяться громоздкие математические формулы, объемные таблицы сопротивления материалов и емкие расчеты. Но существуют более простые задачи, с которыми сталкивается буквально каждый строитель - практик. Например, широко известна строительная задача, которую с успехом решает математика. Одним из самых важных условий при постройке нового дома всегда было правильно разметить углы. Но как получить прямой угол? Ответ на этот вопрос дал греческий математик Пифагор, сформулировав и доказав свою известную теорему. С тех пор задача разметки углов в профессиональном строительстве решается именно через прямоугольный треугольник. Еще одна строительная задача, при решении которой применяется математика - замер площадей сложной формы. Допустим, есть зал с большим количеством ниш, и в некоторых местах стены соприкасаются не под прямым углом. Требуется застелить пол зала каким - либо материалом. Но чтобы заказать нужное количество материала, необходимо знать площадь пола. Математика решает эту задачу путем разделения сложной фигуры на прямоугольники и треугольники. После вычисления их площадей, полученные значения суммируются. С развитием технологий математика начинает влиять и на процессы проектирования и строительства. Так В. Г. Шухов (имя которого носит университет) был блестящим математиком. Виртуозное соединение научных поисков с практическими знаниями во многих областях техники и технологии позволили Шухову сделать множество открытий и изобретений. Рис. 1 В 1913-1917 годах, над перронами Киевского вокзала сооружен красивый навес из 31 арки высотой более 28 м (современное фото) Рис. 2 Гиперболоидные мачты броненосца «Император Павел I», Кронштадт.(фото 1912 г.) Рис. 3 Вид работ по строительству одного из павильонов Нижегородской выставки (фото1895 г.) Уникальным достижением, демонстрирующим победоносный союз науки и производства, была выставка в Нижнем Новгороде 1896 года. Строительной фирмой, главным инженером которой в то время был В.Г. Шухов, построено 8 павильонов, общей площадью 25 тыс.м2. Конструкции каждого павильона уникальны, ни одного повторяющегося решения не позволил себе великий инженер. На примере этих построек можно говорить о формообразующей роли математики. Идя от математических формул, Шухов пришел к конструктивно совершенным и легким строительным конструкциям. Творчество В. Г. Шухова -- пример уникального синтеза теоретических и практических задач. Рис. 4 Вид на павильоны Нижегородской выставки (фото1896 г.) Математика и математическое образование в современном мире Опыт предыдущих поколений и прикладная роль математики в различных областях человеческой деятельности предопределяют особый статус математики в современном естествознании. По итогам ЕГЭ 2010 5,1% выпускников российских школ не смогли сдать экзамен по математике, только 157 человек из 970 000 набрали высший балл. Такие результаты говорят о серьёзности ситуации с изучением данного предмета, и не только в средней школе. Вопрос о пользе проведения выпускного экзамена в форме ЕГЭ и сегодня остается открытым. Математическое сообщество несет свою долю ответственности за повсеместно наблюдаемое давление со стороны правительства и общества в целом, направленное на уничтожение математической культуры как части культурного багажа каждого человека и, в особенности на уничтожение математического образования. Выхолощенное и формализованное изучение математики на всех уровнях сделалось, к несчастью, системой. В истории России был премьер-министр с математическим образованием: окончивший Санкт-Петербургский университет по курсу математике в школе П.Л. Чебышева - граф Витте. Стиль работы Витте по руководству Кабинетом министров заключался вовсе не в применении какой-либо математики ("исчисления"), а в том способе мышления, который он сам называл "математикой-философией" и который заставляет человека с математическим образованием думать обо всех реалиях окружающего мира с помощью (сознательного или бессознательного) математического моделирования. Витте отлично разбирался в реальной жизни страны и в проблемах экономики и техники. С его именем связана вся грандиозная эпоха "развития капитализма в России", в том числе - строительство действующей и сейчас сети железных дорог. Математическое образование должно составлять неотъемлемую часть культурного багажа каждого человека, но, к сожалению, в настоящее время, повсеместно наблюдается отвращение к математике руководителей различных уровней, стремление отомстить за перенесенные в школе «унижения» уничтожением математических знаний. А ведь ещё древнегреческий философ Платон говорил: «Было бы хорошо, если бы эти знания требовало само государство и если бы лиц, занимающих высшие государственные должности, приучали заниматься математикой и в нужных случаях к ней обращаться (из сочинения «Государство» 370-360 г. до н.э.) Литература 1. Колмогоров А. Н., Математика. //Математический энциклопедический словарь. - М. СЭ, 1988; 2. Юшкевич А. П., История математики в средние века, М., 1961; 3. Рыбников К. А., История математики, т. 1--2, М., 1960--63; 4. Бурбаки Н., Очерки по истории математики, перевод с французского, М., 1963; 5. Курант Р., Вступительная статья к сборнику «Математика в современном мире» М., Мир, 1967; 6. Винер Н., «Я - математик» изд.2, - М. Наука, 1967; 7. Гильде В. Зеркальный мир. - М., Мир, 2007; 8. Курант Р., Роббинс Г. Что такое математика? - М., Просвещение, 2007; 9. Гнеденко Б.В. Математика и математическое образование в современном мире. - М., Просвещение, 2005; 10. Фирсов В.В. О прикладной ориентации курса математики. Статья в журн. «Математика в школе» № 6-7 -2006. Использованы материалы сайтов: 1. http://gorod.tomsk.ru;
    2.
    http://ru.wikipedia.org;
    3. http://www.mmonline.ru;
    4. http://www.cultinfo.ru;
    5. http://www.cyberforum.ru;
    6. http://khpi-iip.mipk.kharkiv.edu.
    7. http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika
    Размещено на Allbest.ru

  5. Не одной мне
    известно, что математика очень важная наука, которая применяется во многих сферах
    нашей жизни: начиная от бытовых задач и заканчивая всевозможными делами,
    решающимися на работе. Но вот насколько она (математика) важна? В этом нам
    предстоит разобраться!
    Благодаря
    математическим знаниям и навыкам мы решаем не только арифметические задачи. Это
    наука позволяет развивать гибкость ума, что нужно для принятия объективного
    решения любой задачи. Эта не только задачи математического характера, но и
    различные жизненные ситуации, требующие рассмотрения «под разными углами». Чтобы
    понять, познать сущность проблемы, нужно рассмотреть ее со всех сторон, что
    возможно благодаря воображению.
    Тяжело
    представить, но когда-то люди совсем не умели считать!
    Факты
    убедительно свидетельствуют о том, что счет возник раньше, чем названия чисел.
    Человек пользовался окружавшими его однотипными предметами: пальцы, камешки,
    узелки, нарисованные на стене черточки, зарубки на палках и на деревьях, кучки
    камней и т.п. При возникновении языка слова связываются только с теми
    понятиями, которые уже существуют, т. е. распознаются. Слова “один”,
    “два” и, возможно, “три” появляются независимо от счета.
    Счисление (нумерация) – совокупность приёмов наименования и обозначения чисел.
    Когда счет становится распространенным и привычным делом, для наиболее часто
    встречающихся (т. е. небольших) групп стандартных предметов возникают и
    словесные обозначения.
    С усложнением
    хозяйственной деятельности людей понадобилось вести счет в более обширных
    пределах, что потребовало создания более сложных счётных устройств. Это
    различные счёты (абак, соробан, суан-пан и т.п.) и позднее в средние века
    появляются механические счётные устройства: машина Паскаля, машина Лейбница,
    логарифмические линейки и т.п. Далее разрабатываются счётные устройства,
    которые могут работать под управлением программы – разносная и аналитическая
    машины Бэббиджа.
    Итак, человек научился
    вести счет, но и этот навык нужно было совершенствовать. Появлялись счетные
    устройства и т.д. С течением времени у человечества возникают все новые и новые
    потребности, для удовлетворения которых нужно что-то, еще не придуманное! Это
    является толчком для совершенствования имеющегося и изобретения новшеств. Для
    примера возьмем технический прогресс. Чтобы на свет появился какой-то новый
    аппарат, нужно много ученых, разработчиков. Среди них обязательно окажется
    математик, потому что в этом, несомненно, есть нужда! Отсюда следует
    немаловажная роль математики в развитии окружающего нас мира и человечества вообще.
    Развитие методов
    вычислительной математики и нарастание мощности компьютеров позволяют в наши
    дни выполнять точные расчеты в области динамики сложнейших живых и неживых
    систем с целью прогнозирования их поведения. Реальные успехи на этом пути
    зависят от готовности математиков и программистов к работе с данными,
    полученными традиционными для естественных и гуманитарных наук способами:
    наблюдение, описание, опрос, эксперимент.
    Известно, что математика
    никогда не бывает одна, она всегда к чему-то прикладывается! Это говорит о том,
    что ни одна другая наука не может существовать без математики. Следовательно,
    если бы человечество не создало мира математики, то оно никогда не смогло бы
    обладать НАУКОЙ!
    Положение
    математики в современном мире далеко не то, каким оно было сто или даже только
    сорок лет назад. Математика превратилась в повседневное орудие исследования в
    физике, астрономии, биологии, инженерном деле, организации производства и
    многих других областях теоретической и прикладной деятельности. Многие крупные
    врачи, экономисты и специалисты в области социальных исследований считают, что
    дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным
    использованием математических методов, чем это было до настоящего времени. Не
    зря греческие ученые говорили, что математика есть ключ ко всем наукам.
    Конечно
    же, вышесказанное еще раз доказывает то, как математика важна не просто сама по
    себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем
    самым, помогают развиваться человечеству все дальше и дальше!
    Математика
    всегда была неотъемлемой и существеннейшей составной частью человеческой
    культуры, она является ключом к познанию окружающего мира, базой
    научно-технического прогресса и важной компонентой развития личности.
    Математика
    содержит в себе черты волевой деятельности, умозрительного рассуждения и
    стремления к эстетическому совершенству. Ее основные и взаимно противоположные
    элементы – логика и интуиция, анализ и конструкция, общность и конкретность.
    Мы
    рассмотрели уже много причин, по которым математика считается даже не одной из,
    а самой важной наукой. Попробуем теперь привести еще ряд фактов, доказывающих
    это. Они являются простыми, с ними сталкивается любой человек, причем
    ежедневно.
    1. Математика
    встречается и используется в повседневной жизни, следовательно, определенные
    математические навыки нужны каждому человеку.
    Не правда ли,
    нам приходится в жизни считать (например, деньги), мы постоянно используем
    (часто не замечая этого) знания о величинах, характеризующих протяжённости,
    площади, объёмы, промежутки времени, скорости и многое другое. Всё это пришло к
    нам на уроках арифметики и геометрии и сгодилось для ориентации в окружающем
    мире.
    Математика нужна детям для
    формирования духовного облика, развития необходимых черт характера (терпения,
    трудолюбия). Девочка может учитывать то, что математика поможет ей быть хорошей
    мамой (помогать своим детям, вести с ними развивающую работу). Кому-то занятие
    этой наукой придает уверенности в себе, кто-то рад, что узнает
    об интересных людях (например, об Архимеде). Некоторым математика приятна
    как наука, большинство осознает ее необходимость в будущей профессии.
    Математические
    знания и навыки необходимы практически во всех профессиях. Прежде всего,
    конечно, в тех, что связаны с естественными науками, техникой и экономикой.
    Математика является языком естествознания и техники и потому профессия
    естествоиспытателя и инженера требует серьезного овладения многими
    профессиональными сведениями, основанными на математике. Очень хорошо сказал об
    этом Галилей: “Философия [речь идёт о натурфилософии, на нашем современном
    языке – о физике] написана в величественной книге, которая постоянно
    открыта вашему взору, но понять её может лишь тот, кто сначала научится
    понимать её язык и толковать знаки, которыми она написана. Написана же она на
    языке математики.” Но ныне несомненна необходимость применения математических знаний
    и математического мышления врачу, лингвисту, историку, и трудно оборвать этот
    список, настолько важно математическое образование для профессиональной
    деятельности в наше время. Следовательно, математика и математическое
    образование нужны для подготовки к будущей профессии. Для этого необходимы
    знания из алгебры, математического анализа, теории вероятности и статистики.
    Ещё одной
    важнейшей причиной нужды человечества в математике является воспитание в
    человеке способности понимать смысл поставленной перед ним задачи, умение
    правильно, логично рассуждать, усвоить навыки алгоритмического мышления.
    Каждому надо научиться анализировать, отличать гипотезу от факта, критиковать,
    понимать смысл поставленной задачи, схематизировать, отчётливо выражать свои
    мысли и т. п., а с другой стороны – развить воображение и интуицию
    (пространственное представление, способность предвидеть результат и предугадать
    путь решения и т. д.). Иначе говоря, математика нужна для интеллектуального
    развития личности. В 1267 году знаменитый английский философ Роджер Бекон
    сказал: “Кто не знает математики, не может узнать никакой другой науки и даже
    не может обнаружить своего невежества.”
    Военная безопасность,
    экономическая и технологическая независимость страны зависят от математической грамотности
    ее граждан, причем основной массы, а не элитной группы. Трудно переоценить
    важность математики, математической образованности и математической культуры в
    современном мире. Вся современная наука пронизана математическими методами и
    математическими идеями.
    Плохое
    математическое образование нарушает основные права гражданина, в частности
    право на свободный выбор профессии. Людьми, не знающими, что такое
    математическое доказательство, математическое рассуждение, легко манипулируют
    бесстыдные политики, а также финансовые воротилы и криминальные авторитеты
    через контролируемые ими СМИ. Математически необразованные люди готовы покорно
    следовать за любым лжепророком, с восторгом внимают бесноватым ясновидящим и
    малограмотным астрологам. Математически малограмотные руководители государств,
    крупных промышленных и финансовых корпораций, окруженные недостаточно
    математически образованными советниками и консультантами, представляют сегодня
    огромную опасность для человечества. Они не способны системно мыслить, не могут
    просчитать даже ближайшие последствия своих действий, которые все чаще и чаще
    приводят к военным конфликтам, экономическим кризисам, финансовым потрясениям,
    экологическим и гуманитарным катастрофам, очень быстро теряющим локальный
    характер.
    Математическое
    моделирование должно стать обязательным этапом, предшествующим принятию любого
    ответственного решения. Достижения советско-российской математической науки и
    математического образования общеизвестны и общепризнанны. Именно они стали
    основой многих реальных успехов России советского периода. Российская
    математическая школа оказала серьезное влияние и на развитие мировой науки и
    образования во второй половине ХХ века. Ее учеников можно встретить во всех
    сколько-нибудь крупных научных центрах планеты. Но сегодня мы с горечью
    наблюдаем значительное снижение математической образованности нашего общества,
    падение его математической культуры. Многочисленные так называемые инновации
    разрушают традиции российского образования, предлагая в качестве ориентиров худшие
    западные образцы. Экономическая разруха, ставшая основным признаком
    происходящих в нашей стране реформ, отодвинула проблемы образования на
    последнее место. В самой же системе образования в самом тяжелом положении
    оказалась именно математика, как предмет, плохо соответствующий рыночной
    идеологии. В последнее время идет постоянное сокращение часов на математические
    предметы, уменьшение и упрощение программ. Практически не издается современная
    научная литература по математике, без которой невозможно воспитание
    специалистов высшей квалификации. Продолжающаяся эмиграция и полуэмиграция
    ведущих ученых и преподавателей, а теперь и лучших учащихся значительно
    ускоряют этот процесс распада.
    Обеспокоенность
    состоянием математического образования в России выражают сегодня многие
    зарубежные ученые. Российское математическое образование было и все еще
    остается образцом для всего мира, и его разрушение может стать началом
    разрушения математического образования всего цивилизованного человечества.
    Математика – это феномен
    общемировой культуры, в ней отражена история развития человеческой мысли.
    Разрушая математику, математическое образование, мы разрушаем общечеловеческую
    культуру, уничтожаем историю человечества. Всеобщая компьютеризация не только
    не уменьшила важность математического образования, но и, наоборот, поставила
    перед ним новые задачи. Снижение уровня математической образованности и
    математической культуры общества может превратить человека из хозяина
    компьютера в его прислугу и даже раба.
    В процессе
    познания действительности математика играет все возрастающую роль. Сегодня нет
    такой области знаний, где в той или иной степени не использовались бы
    математические понятия и методы. Проблемы, решение которых раньше считалось
    невозможным, успешно решаются благодаря применению математики, тем самым
    расширяются возможности научного познания. Современная математика объединяет
    весьма различные области знания в единую систему. Этот процесс синтеза наук,
    осуществляемый на лоне математизации, находит свое отражение и в динамике
    понятийного аппарата. Чтобы человечество развивалось, причем развивалось
    плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого
    необходимы креативные люди с необычным мышление, широким кругозором, гибким
    умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя.
    Математика заставляет нас думать, анализировать. В процессе поиска информации
    для приготовленного мною сообщения я нашла один интересный сайт. На нем люди
    разного возраста, образования, мировоззрения делились своими мнениями о
    математике, а именно: оставляли свои голоса за и против математики, за любовь
    или ненависть по отношению к ней. Вот что написал один из участников
    обсуждения: «В математике нет лжи. Все формулы и теоремы имеют строгое
    доказательство. Математика развивает способность к логическому мышлению, что
    позволяет человеку жить интересно и никогда не скучать. Прочитал массу
    учебников по высшей математике. Благодаря изучению высшей математики
    приобретается философский аналитический ум и способность к самостоятельному
    мышлению». Вывод из этого можно сделать такой: для развития цивилизации
    необходимо развитие человеческого интеллекта. Это возможно благодаря
    «философскому аналитическому уму и способности к самостоятельному мышлению»,
    что достигается в результате «разминки мозга».
    Все мы хорошо
    понимаем важность физкультуры для полнокровной жизни каждого человека, важность
    тренировки тела. Столь же необходима (вряд ли кто-то будет спорить) физкультура
    мозга, тренировка ума. И все мы знаем, сколь богатые возможности для этого даёт
    математика. (Не только она, тренируют мозг и занятия с компьютерами, и, скажем,
    изучение языков, но, как мне кажется, всё же лучше всего для этого
    приспособлена именно математика.)

  6. Роль математики в жизни человека
    Математика – наука,
    Хороша  и всем нужна,
    Без неё прожить нам трудно,
    Без неё нам жизнь сложна.
    Вы не встретите в жизни ни одного человека, который не занимался бы математикой.
    Каждый умеет считать, знает таблицу умножения, умеет рисовать геометрические фигуры. С этими фигурами мы часто встречаемся в окружающей жизни. Мы не замечаем, но математика словно сопровождает нас на каждом шагу, на протяжении всей жизни.
    Кто-то, возможно, думает, что различные замысловатые линии и поверхности можно встретить только в книгах ученых-математиков. Однако это не так. Стоит внимательно присмотреться, и мы сразу обнаружим вокруг нас всевозможные геометрические фигуры. Оказывается, их очень много, просто мы раньше их не замечали.  Стены, потолок и пол в здании являются как  обычно прямоугольниками, а сама комната – параллелепипед. Мебель в комнате тоже комбинация геометрических тел. Письменный стол– это параллелепипед, на столе лампа с абажуром в форме усеченного конуса. Ведро – либо цилиндр, либо усеченный конус.
    Без знания математики никак нельзя обойтись в быту. Чтобы сделать покупку, мы решаем в уме задачу с данными: цена, количество, стоимость. Когда мы едем в путешествие, то решаем задачу сданными: скорость, время, расстояние.
    Моя  мама работает  продавцом. Ей ежеминутно в течение рабочего времени приходиться общаться покупателями, а это значит что нужно  правильно взвесить  покупаемый товар и,  конечно же, правильно сосчитать ее стоимость,  а,  затем, не обманув ни  себя,  ни покупателя  правильно рассчитаться с ним.

  7. Математика – это феномен общемировой культуры, в ней отражена история развития человеческой мысли. Разрушая математику, математическое образование, мы разрушаем общечеловеческую культуру, уничтожаем историю человечества. Всеобщая компьютеризация не только не уменьшила важность математического образования, но и, наоборот, поставила перед ним новые задачи. Снижение уровня математической образованности и математической культуры общества может превратить человека из хозяина компьютера в его прислугу и даже раба.
    В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя. Математика заставляет нас думать, анализировать.
    «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Благодаря изучению высшей математики и математики вообще приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта. Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга». Все мы хорошо понимаем важность физкультуры для полнокровной жизни каждого человека, важность тренировки тела. Столь же необходима (вряд ли кто-то будет спорить) физкультура мозга, тренировка ума. И все мы знаем, сколь богатые возможности для этого даёт математика. (Не только она, тренируют мозг и занятия с компьютерами, и, скажем, изучение языков, но, как мне кажется, всё же лучше всего для этого приспособлена именно математика).

  8. Лубова, Т. Н. Многомерные статистические методы [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. – Уфа : Изд-во БГАУ, 2015. – 64 с.
    Лубова, Т. Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. – Уфа : Изд-во БашГАУ, 2015. – 163 с.
    Исламгулов, Д.Р. Применение корреляционного анализа в агрономии [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Уральский научный вестник. – 2016. – Т. 4. – № 3. – С. 142-147.
    Лубова, Т.Н. Принципы статистического прогнозирования при разработке инновационной стратегии региона [Текст] / Т.Н. Лубова // Экономика, экология и общество России в 21-м столетии: Сборник научных трудов: 11-й Международной научно-практической конференции, 19-21 мая 2009 г. / Санкт-Петербургский государственный политехнический университет. – С.-Петербург, 2009. – С. 155-156.
    Лубова, Т. Н. Многомерная классификация регионов Приволжского федерального округа по уровню финансовой безопасности [Текст] / Т. Н. Лубова // Конкурентоспособность региона в условиях экологических и демографических ограничений: Материалы межрегиональной научно-практической конференции. – Улан-Уде: Изд-во БНЦ СО РАН, 2009. – с. 149-159.
    Лубова, Т. Н. Классификация регионов Российской Федерации методом кластерного анализа [Текст] / Т. Н. Лубова // Образование, наука, практика: инновационный аспект: Сб. материалов международной научно-практической конференции, посвященной памяти профессора А.Ф. Блинохватова. – Пенза: РИО ПГСХА, 2008. – С.379-381.
    Исламгулов, Д. Р. Компетенция – основа реализации цели ФГОС [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Актуальные проблемы преподавания социально-гуманитарных, естественно – научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. – Уфа, 2014. – С. 133-137.
    Лубова, Т. Н. Оценка качества образования в рамках компетентностного подхода [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Актуальные проблемы преподавания социально-гуманитарных, естественно – научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. – Уфа, 2014. – С. 189-192.
    Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
    Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. – № 1. – С. 62-69.
    Исламгулов, Д.Р. Модульно-рейтинговая система обучения и оценки знаний – особенности внедрения [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Современный научный вестник. – 2015. – Т. 7. – № 1. – С. 70-78.
    Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. – № 1. – С. 79-84.
    Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. – № 1. – С. 85-93.
    Лубова, Т.Н. Использование тестирования в организации самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 12. – С. 44-48.

  9. Министерство образования и науки РФ
    Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
    Московский государственный машиностроительный университет (МАМИ)
    Реферат
    По дисциплине: Математика
    Роль математики в современном мире
    Выполнил:
    Стариков И.Е.
    Проверил:
    Крутских В.В.
    г. Губкин 2014

    Содержание
    Введение
    1. Определения математики
    2. Основные этапы развития математики
    3. Роль математики в науке
    4. Роль математики в интеллектуальном развитии личности
    5. Роль математики в познании мира и самого себя
    6. Роль математики в медицине
    7. Роль математики в юриспруденции
    Заключение
    Источники

    Введение
    Математика является экспериментальной наукой – частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса – каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений, сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.
    “No star wars – no mathematics”, – говорят американцы. Тот прискорбный факт, что с прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только “прикладные” науки.
    Ведь опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей (английский физик, химик и физик, химик, основоположник учения об электромагнитном поле) и Максвелл (заложил основы современной классической электродинамики и многое другое) написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету – удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и, следовательно, экономической (а также и военной) отсталостью. Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях эколого-экономического кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран. В настоящее время математика пропитывает насквозь всю нашу жизнь. Мы уже не представляем мир без всех многочисленных технических средств и приспособлений. А они каждый день совершенствуются. То, что еще 10 лет назад казалось фантастикой сейчас уже реальность. Кто-то скажет, что это заслуга различный прикладных наук, но он будет ошибаться, так как без математики ничего бы этого не было.

    1. Определения математики
    Математика – область человеческого знания, изучающая математические модели, отражающие объективные свойства и связи. “Замечательно, – пишет В.А. Успенский, – что хотя математическая модель создается человеческим разумом, она, будучи создана, может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальности” Кроме того, математика дает удобные способы описания самых разнообразных явлений реального мира и тем самым выполняет роль языка науки. Наконец, математика дает людям методы изучения и познания окружающего мира, методы исследования как теоретических, так и практических проблем.
    Математика (греч. mathematike, от mathema – знание, наука) наука, в которой изучаются пространственные формы и количественные отношения. Современное понятие математики – наука о математических структурах (множествах, между элементами которых определены некоторые отношения). У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.
    “Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира” (Ф. Энгельс).
    “Математика – наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной.
    Математика делится на арифметику и геометрию; первая располагает цифрами, вторая – протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа” (В. Даль). Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.
    2. Основные этапы развития математики
    В истории математики традиционно выделяются несколько этапов развития математических знаний:
    1. Формирование понятия геометрические фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.
    2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские, китайские и индийские математики древности.
    3. Появление в древней Греции математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклида.
    4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.
    5. В XVI-XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной, и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости (функция) и ускоренного движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.
    6. В XIX-XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»: найти причину «непостижимой эффективности математики в естественных науках». В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.
    3. Роль математики в науке
    Известно, что математика никогда не бывает одна, она всегда к чему-то прикладывается! Это говорит о том, что ни одна другая наука не может существовать без математики. Следовательно, если бы человечество не создало мира математики, то оно никогда не смогло бы обладать НАУКОЙ!!!
    Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие. Исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.
    Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше! Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности. Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы – логика и интуиция, анализ и конструкция, общность и конкретность.
    4. Роль математики в интеллектуальном развитии личности
    В современной науке под образованием обычно понимают систему знаний, навыков, овладение которыми обеспечивает развитие интеллектуальных и духовных способностей личности, формирование основ её мировоззрения и морали, подготовку молодого человека к жизни и труду.
    На рубеже XX и XXI вв. оно стало наиболее важной фундаментальной проблемой, ибо по утверждению немецкого философа М. Шелера, “Когда в трудной борьбе за новый мир новый человек дерзает создавать новые формы, центральной становится проблема образования человека”1. Образование – проективный процесс, всей своей сущностью оно устремлено в будущее. Образование – это важнейший механизм развития не только индивида, но и общества в целом, механизм, направленный на формирование и развертывание физического, интеллектуального и духовного потенциалов общества в их различных видах и формах.
    Ещё одной важнейшей причиной нужды человечества в математике является воспитание в человеке способности понимать смысл поставленной перед ним задачи, умение правильно, логично рассуждать, усвоить навыки алгоритмического мышления. Каждому надо научиться анализировать, отличать гипотезу от факта, критиковать, понимать смысл поставленной задачи, схематизировать, отчётливо выражать свои мысли и т. п., а с другой стороны – развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения и т. д.). Иначе говоря, математика нужна для интеллектуального развития личности. В 1267 году знаменитый английский философ Роджер Бекон сказал: “Кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества”.
    5. Роль математики в познании мира и самого себя
    В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя.
    Математика заставляет нас думать, анализировать. В процессе поиска информации для приготовленного мною сообщения я нашла один интересный сайт. На нем люди разного возраста, образования, мировоззрения делились своими мнениями о математике, а именно: оставляли свои голоса за и против математики, за любовь или ненависть по отношению к ней. Вот что написал один из участников обсуждения: «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Прочитал массу учебников по высшей математике. Благодаря изучению высшей математики приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта. Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга».
    6. Роль математики в медицине
    Математика и математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью математика, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.
    Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений. Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику и информатику. Наиболее развиты математике в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря математике значительно расширилась область познания основ жизнедеятельности, и появились новые высокоэффективные методы диагностики и лечения; Математика лежит в основе разработок систем жизнеобеспечения, используются в медицинской технике.
    Все большую роль во внедрении математики в медицину играют ЭВМ. В частности, применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. Математика смыкается с методами кибернетики информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики. Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения).
    7. Роль математики в юриспруденции
    На современном этапе развития юридической науки увеличивается объем нормативно-правовой, криминологической, уголовно-статистической и иной информации, особую актуальность приобретает анализ математических средств и методов исследования разнообразных правовых явлений и процессов. Математика все в большей степени становится необходимым атрибутом юридической науки. Это объясняется рядом существенных причин.
    Во-первых, органическим единством природы и общества. Общество состоит из значительного числа экономических, социальных, правовых и иных систем. Функционирование и развитие последних (включая и объекты государственно-правовой реальности) представляют собой естественно-исторический и управленческо-информационный процесс, который должен изучаться с математической точностью.
    Во-вторых, правовые системы, явления и процессы (прежде всего механизмы правотворчества, правового регулирования, законности, борьбы с преступностью) обладают и количественной мерой (количеством норм, связей, интенсивностью потоков информации, степенью развития, целенаправленности и т.д.).
    В-третьих, в юридических науках в связи с правовой информатизацией общества, созданием информационных комплексов и систем в области права и решением на компьютерах юридических задач возникло значительное число проблем, связанных с оптимизацией функционирования правовых систем, юридических органов и процессов. Эти проблемы не могут быть решены без привлечения разнообразных математических методов, так как сущность оптимизации в этом случае состоит в разработке формализованных способов достижения целей функционирования систем с наименьшими затратами материальных средств, времени в решении информационных, логических и математических задач.
    В-четвертых, математика как наука обладает содержательным понятийным аппаратом, с помощью которого представляется возможным отразить в абстрактном виде структуру отдельных правовых систем, их цели, функции, происходящие в них процессы сбора, обработки и использования информации.
    В-пятых, в юридической науке, особенно в таких ее областях, как государственное управление, правовое регулирование предпринимательской деятельности, криминология, криминалистика и правовая информатика, приходится часто иметь дело с количественными параметрами. Последние касаются объема информации, поступающей в государственные органы, количественных оценок правового регулирования, качества и объема промышленной продукции, состояния и уровня преступности, криминалистических показателей и т.п.
    К сожалению, об аргументах в пользу широкого применения математических средств и методов и о тесной взаимосвязи количественного анализа с качественным в юридических науках порой забывают. При этом ссылаются на сложность, социальный характер нормативно-правовых и иных связанных с ними систем, явлений и процессов; указывают на то, что юристы в процессе своей повседневной деятельности имеют дело с фактами не только объективного, но и субъективного порядка, трансформация которых в математическую форму не всегда может осуществляться в рамках положений и аксиом высшей и прикладной математики; отмечают невозможность математизации всех явлений правовой реальности.
    Общеизвестно, что объекты, изучаемые юридическими науками, действительно социальные, многомерные по своей природе и чрезвычайно сложные. Однако вопрос заключается в другом. Информатизация всех сторон жизни нашего общества, усложнение хозяйственных и социальных связей в условиях рыночных отношений вызывают естественное усложнение систем в сфере юридической деятельности. Это требует всестороннего, в том числе количественного, математического анализа отдельных правовых и связанных с ними систем, явлений и процессов в области государственного управления, правового регулирования предпринимательства, информационного обеспечения в области права, криминологии, информационного права, криминалистики и т.д. Социальный характер информационных правовых систем, явлений и процессов не может служить препятствием для разумного применения математических методов в юридических науках.
    Формализация фактов различного порядка, с которыми приходится иметь дело юристу, не всегда может осуществляться в рамках положений или правил классической высшей и прикладной математики. Поэтому необходима специальная теория измерения в области права, которая существенно отличается от существующей теории измерения, используемой в естественных науках. В то же время в социальной реальности (при исследовании экономических, управленческих, информационных и других проблем) сегодня активно используются теория вероятностей, математическая статистика, теория информации, математическая логика, теория графов, теория игр, линейное и динамическое программирование и другие разделы современной математической науки. В юридической сфере наметилось определенное число проблем и задач, не имеющих формально-алгоритмической разрешенности. Поэтому пока нет возможности, да и необходимости формализовать (отображение результатов мышления в точных понятиях и утверждениях), например, правовую систему общества в целом, ее структуру, функции, все потоки социально-правовой информации, задачи правового регулирования, так как все общественные системы, явления и процессы, в том числе и правовые, нельзя описать языком математики. И это, собственно говоря, не нужно. Главное, как справедливо в свое время заметил Д.А. Керимов, – это решение с помощью математических средств и методов частных проблем и задач юридической науки в целях дальнейшего совершенствования юридической деятельности в целом. Речь идет об использовании математических методов для исследования в отдельных юридических систем; об измерениях правовых установок, анализе правовых явлений, эффективности правовой информации и в статистической криминалистике.
    Заметим, что в рамках юридических наук и, в частности, в рамках правовой информатики и информационного права при изучении разнообразных социальных явлений и процессов давно эффективно используются теория вероятностей, математическая статистика, математическая логика, теория информации, исследование операций и другие математические науки и дисциплины. Математические методы, специфически преломляясь в учении о государстве и праве, обогащают и усиливают его собственные методы, но не заменяют их.
    В то же время при всех достоинствах математизации юридической науки и права нельзя преувеличивать ее возможности и сводить сущность государственно-правовых проблем к чистой математике. Ведущая роль в юридических науках принадлежит качественному анализу. Использование здесь математических средств и методов ориентировано в настоящее время, по существу, на решение частных практических проблем и задач. Математические средства и методы исследования правовых систем ограничиваются только измерением однородных связей данных систем; им недоступны всеобщие связи правовой системы общества в целом в силу их универсальности.
    Известную ограниченность математики в исследовании государственно-правовых проблем и задач сознают и ее представители. Поэтому так называемая математическая юриспруденция, которой еще предстоит детальная разработка разнопорядковых правовых систем, явлений, процессов и задач, должна опираться на общую теорию сущности изучаемых явлений и процессов; она может быть плодотворной в области права, если не забывать о естественных ограничениях и целесообразности ее применения на основе качественных знаний. Понятие “математическая юриспруденция” введено впервые в юридическую литературу Д.А. Керимовым в 1972 г. В настоящее время в общем виде уже можно говорить о содержании “математической юриспруденции. Короче говоря, под математикой в области юридических наук можно понимать науку о количественных и пространственных моделях, а также о теоретических информационных моделях в правовой действительности.

    Заключение
    Математика – это феномен общемировой культуры, в ней отражена история развития человеческой мысли. Разрушая математику, математическое образование, мы разрушаем общечеловеческую культуру, уничтожаем историю человечества. Всеобщая компьютеризация не только не уменьшила важность математического образования, но и, наоборот, поставила перед ним новые задачи. Снижение уровня математической образованности и математической культуры общества может превратить человека из хозяина компьютера в его прислугу и даже раба.
    В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя. Математика заставляет нас думать, анализировать.
    «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Благодаря изучению высшей математики и математики вообще приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта. Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга». Все мы хорошо понимаем важность физкультуры для полнокровной жизни каждого человека, важность тренировки тела. Столь же необходима (вряд ли кто-то будет спорить) физкультура мозга, тренировка ума. И все мы знаем, сколь богатые возможности для этого даёт математика. (Не только она, тренируют мозг и занятия с компьютерами, и, скажем, изучение языков, но, как мне кажется, всё же лучше всего для этого приспособлена именно математика).

    Источники
    математика геометрический фигура
    1. Бурбаки Н. Очерки по истории математики / Н. Бурбаки. – М.: Изд-во Ин. лит., 1972.
    2. Гнеденко Б.В. Математика в современном мире / Б.В. Гнеденко. – Издательство Просвещение. – М.: Просвещение, 1980.
    3. Кудрявцев Л.Д. Мысли о современной математике и ее изучении / Л.Д. Кудрявцев. – М.: Просвещение, 1977.
    Размещено на Allbest.ru

  10. Сейчас не удивишь словосочетаниями «математическая лингвистика», «математическая биология», «математическая экономика» и т.п. Какую дисциплину ни взять, вряд ли кому-нибудь покажется невозможным присоединение к ее наименованию эпитета «математический». Математика занимает сегодня видное место в жизни общества.
    Тем не менее, повсеместный триумф математики некоторым кажется загадочным, даже подозрительным. Не вызывает сомнений право на всеобщее признание, например, физики или химии. Физика открывает нам новые источники энергии, новые средства быстрой связи. Химия создает искусственные ткани, сейчас пытается создать искусственную пищу. Неудивительно, что эти науки, помогающие человеку в его извечных поисках энергии, связи, одежды и еды, прочно вошли в нашу жизнь.
    Что же дает математика, которая не открывает новых способов передвижения, как физика, и не создает новых вещей, как химия? Почему появление в какой-либо отрасли науки и техники математических методов означает и достижение в этой отрасли определенного уровня зрелости, и начало нового этапа развития?
    Еще недавно ответ на эти вопросы состоял в том, что математики умеют хорошо вычислять и осуществляют математическую обработку цифровых данных, связанных с тем или иным изучаемым процессом. Однако при всей важности вычислительного аспекта математики, особенно в последние годы в связи с бурным ростом вычислительной техники, он оказывается неглавным при попытке объяснить причины математизации современного мира.
    Главная причина этого процесса такова: математика предлагает весьма эффективные модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Такие модели математика дает с помощью своего особого языка – языка чисел, различных символов. При этом математическая модель, отображая и воспроизводя те или иные стороны рассматриваемого объекта, способна замещать его так, что исследование модели даст новую информацию об объекте, опирающуюся на принципы математической теории, сформулированные математическим языком законы природы и общества. Если математическая модель верно отражает суть данного явления, то она позволяет находить и не обнаруженные ранее закономерности, давать математический анализ условий, при которых возможно решение теоретических или практических задач, возникающих при исследовании этого явления.
    Возникает один общий вопрос: нужна ли математика гуманитарию вообще?
    Известно, что математика является частью общечеловеческой культуры, такой же неотъемлемой и важной, как право, медицина, естествознание и многое другое. Все лучшие достижения человеческой мысли, человеческих рук и составляют основу гуманитарного образования, необходимого каждому современному человеку. Исходя из этого, для студента-гуманитария математика – это, прежде всего, общеобразовательная дисциплина, как, например, право для студента-математика.
    Но значение математики этим не исчерпывается. Напомним слова М.Ломоносова: «Математику уже затем учить следует, что она ум в порядок приводит». Математика влияет на упорядочение ума общностью и абстрактностью своих конструкций. Математика полна всякого рода правил, общих, строго определенных методов решения различных классов однотипных задач. Решая любую задачу, человек должен строго следовать точному предписанию (алгоритму) о том, какие действия и в каком порядке надо выполнить. Нередко изучающему математику приходится составлять подобные предписания, т. е. находить алгоритм.
    Можно утверждать, что математика учит точно формулировать разного рода правила, предписания, инструкции и строго их исполнять (не последнее качество, необходимое, например, любому юристу). В юриспруденции, как и в математике, применяются одни и те же методы рассуждений, цель которых – выявить истину. Любой правовед, как и математик, должен уметь рассуждать последовательно, применять на практике индуктивный и дедуктивный методы. Занимаясь математикой, будущий правовед формирует свое профессиональное мышление.
    Кроме того, применение математических методов расширяет возможности каждого специалиста. Существенную роль играют статистика, умение правильно обработать информацию, сделать достоверный вывод или прогноз на основании имеющегося статистического материала.
    Мы живем в век математики. В настоящий момент одни науки уже безоговорочно приняли математику на вооружение, другие только начали ее применять. Гуманитарии, например, относятся к последним. Среди них немало еще сомневающихся в перспективности использования математических методов. Однако в настоящее время большая их часть спорит уже не о том, «нужно ли применять», а о том – «где и как лучше применять».
    Математика – это феномен общемировой культуры, в ней отражена история развития человеческой мысли. Математика, с ее строгостью и точностью, формирует личность, предоставляет в ее распоряжение важнейшие ресурсы, столь необходимые для обеспечения наилучшего будущего.
    Итак, математическое образование важно с различных точек зрения:
    логической — изучение математики является источником и средством активного интеллектуального развития человека, его умственных способностей;
    познавательной – с помощью математики познается окружающий мир, его пространственные и количественные отношения;
    прикладной – математика является той базой, которая обеспечивает готовность человека как к овладению смежными дисциплинами, так и многими профессиями, делает для него доступным непрерывное образование и самообразование;
    исторической – на примерах из истории развития математики прослеживается развитие не только ее самой, но и человеческом культуры в целом;
    философской – математика помогает осмыслить мир, в котором мы живем, сформировать у человека развивающиеся научные представления о реальном физическом пространстве.
    Контрольные вопросы
    1 1 Приведите 2-3 распространенных в литературе определения понятия «математика».
    2 Какие определения, аксиомы и постулаты привел Евклид в своих «Началах» в III в. до н.э.?
    3 В чем заключается сущность аксиоматического метода?
    4 Какое место занимает математика в системе других наук?
    5 В чем важность математического образования?
    6 Перечислите основные математические структуры. Чем они характеризуются?
    7 Для чего математика нужна гуманитарию?
    8 Перечислите недостатки системы аксиом Евклида.
    9 Назовите геометрии, отличающиеся от геометрии Евклида. В чем состоит их отличие?
    10 Какие понятия называют основными неопределяемыми понятиями?
    11 Что значит определить понятие?
    12 Что такое аксиома, теорема?
    13 Какие требования предъявляются к системе аксиом?
    Тема 2: Элементы теории множеств
    Каждый с самого рождения бессознательно пользуется теорией множеств, так же как Мольеров Журден из «Мещанина во дворянстве» разговаривает прозой, сам того не ведая.

  11. Реферат
    на тему: «Математика в современном мире».
    Математика является экспериментальной наукой — частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса — каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений (и computer science), сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.
    «No Star Wars — no mathematics», — говорят американцы. Тот прискорбный факт, что с (временным?) прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только «прикладные» науки, ведущей себя совершенно подобно свинье под дубом.
    На самом деле никаких прикладных наук не существует и никогда не существовало, как это отметил более ста лет назад Луи Пастер (которого трудно заподозрить в занятиях, не нужных человечеству). Согласно Пастеру, существуют лишь приложения науки.
    Опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей и Максвелл написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету — удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и, следовательно, экономической (а также и военной) отсталостью. Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях мальтузианского кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран.
    Математическое сообщество несет свою долю ответственности за повсеместно наблюдаемое давление со стороны правительств и общества в целом, направленное на уничтожение математической культуры как части культурного багажа каждого человека и в особенности на уничтожение математического образования.
    Выхолощенное и формализованное преподавание математики на всех уровнях сделалось, к несчастью, системой. Выросли целые поколения профессиональных математиков и преподавателей математики, умеющих только это и не представляющих себе возможности какого-либо другого преподавания математики.
    Целью изучения математики является повышение общего кругозора, культуры мышления, формирование научного мировоззрения.
    Математика – наука о количественных отношениях и пространственных формах действительного мира. Академик Колмогоров А.Н. выделяет четыре периода развития математики:
    · зарождение математики,
    · элементарная математика,
    · математика переменных величин,
    · современная математика.
    Начало периода элементарной математики относят к VI-V веку до нашей эры. К этому времени был накоплен достаточно большой фактический материал. Понимание математики, как самостоятельной науки возникло впервые в Древней Греции. В течение этого периода математические исследования имеют дело лишь с достаточно ограниченным запасом основных понятий, возникших для удовлетворения самых простых запросов хозяйственной жизни. Развивается арифметика – наука о числе.
    В период развития элементарной математики появляется теория чисел, выросшая постепенно из арифметики. Создается алгебра, как буквенное исчисление. Обобщается труд большого числа математиков, занимающихся решением геометрических задач в стройную и строгую систему элементарной геометрии геометрию Евклида, изложенную в его замечательной книге Начала (300 лет до н. э.).
    В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур. С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенная Ньютоном и Лейбницем понятие бесконечно малой величины, создание основ анализа бесконечно малых (математического анализа). На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.
    К этому времени относятся и появление гениальной идеи Р. Декарта о методе координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.
    Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения. Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории. Новые теории возникают не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является воображаемая геометрия Н. И. Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, математизация различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.
    В основе построения математической теории лежит аксиоматический метод. В основу научной теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются, как логические следствия аксиом. Основными методами в математических исследованиях являются математические доказательства – строгие логические рассуждения. Математическое мышление не сводится лишь к логическим рассуждениям. Для правильной постановки задачи, для оценки выбора способа ее решения необходима математическая интуиция.
    В математике изучаются математические модели объектов. Одна и та же математическая модель может описывать свойства далеких друг от друга реальных явлений. Так, одно и тоже дифференциальное уравнение может описывать процессы роста населения и распад радиоактивного вещества. Для математика важна не природа рассматриваемых объектов, а существующие между ними отношения.
    В математике используют два вида умозаключений: дедукция и индукция .
    Индукция – метод исследования, в котором общий вывод строится не основе частных посылок.
    Дедукция – способ рассуждения, посредством которого от общих посылок следует заключение частного характера.
    Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.
    Создание дедуктивного или аксиоматического метода построения науки является одним из величайших достижений математической мысли. Оно потребовало работы многих поколений ученых. Замечательной чертой дедуктивной системы изложения является простота этого построения, позволяющая описать его в немногих словах. Дедуктивная система изложения сводится:
    1) к перечислению основных понятий,
    2) к изложению определений,
    3) к изложению аксиом,
    4) к изложению теорем,
    5) к доказательству этих теорем.
    Аксиома – утверждение, принимаемое без доказательств.
    Теорема – утверждение, вытекающее из аксиом.
    Доказательство – составная часть дедуктивной системы, это есть рассуждение, которое показывает, что истинность утверждения вытекает логически из истинности предыдущих теорем или аксиом.
    Внутри дедуктивной системы не могут быть решены два вопроса:
    1) о смысле основных понятий,
    2) об истинности аксиом. Но это не значит, что эти вопросы вообще неразрешимы.
    История естествознания свидетельствует, что возможность аксиоматического построения той или иной науки появляется лишь на довольно высоком уровне развития этой науки, на базе большого фактического материала, позволяет отчетливо выявить те основные связи и соотношения, которые существуют между объектами, изучаемыми данной наукой.
    Образцом аксиоматического построения математической науки является элементарная геометрия. Система аксиом геометрии были изложены Евклидом (около 300 г. до н. э.) в непревзойденном по своей значимости труде “Начала”. Эта система в основных чертах сохранилась и по сей день.
    Основные понятия: точка, прямая, плоскость основные образы; лежать между, принадлежать, движение.
    Элементарная геометрия имеет 13 аксиом, которые разбиты на пять групп. В пятой группе одна аксиома о параллельных (V постулат Евклида): через точку на плоскости можно провести только одну прямую, не пересекающую данную прямую. Это единственная аксиома, вызывавшая потребность доказательства. Попытки доказать пятый постулат занимали математиков более 2-х тысячелетий, вплоть до первой половины 19 века, т.е. до того момента, когда Николай Иванович Лобачевский доказал в своих трудах полную безнадежность этих попыток. В настоящее время недоказуемость пятого постулата является строго доказанным математическим фактом.
    Аксиому о параллельных Н.И. Лобачевский заменил аксиомой: Пусть в данной плоскости дана прямая и лежащая вне прямой точка. Через эту точку можно провести к данной прямой, по крайней мере, две параллельные прямые. Из новой системы аксиом Н.И. Лобачевский с безупречной логической строгостью вывел стройную систему теорем, составляющих содержание неевклидовой геометрии. Обе геометрии Евклида и Лобачевского, как логические системы равноправны.
    Три великих математика в 19 веке почти одновременно, независимо друг от друга пришли к одним результатам недоказуемости пятого постулата и к созданию неевклидовой геометрии.
    Николай Иванович Лобачевский (1792-1856)
    Карл Фридрих Гаусс (1777-1855)
    Янош Бойяи (1802-1860)
    Судьба открытия Лобачевского. В 2004 г. Казанский Государственный Университет отметил 200-летие своего существования. Имя Николая Ивановича Лобачевского тесно связано с Казанским Университетом и составляет его гордость.
    Н. И. Лобачевский родился 1 декабря 1792г. в Нижнем Новгороде, в 1807 году поступил в Императорский Казанский Университет, в 1811 году окончил его. 19 февраля 1826 года представил доклад о своем открытии физико-математическому факультету. В течении всей своей жизни он развивал свои идеи, которые излагал в трудах “Начала геометрии”, “Воображаемая геометрия” и других. За год до смерти он опубликовал свою работу “Пангеометрия” (1855г.).
    Николай Иванович помимо научных трудов, вел громадную работу, как профессор, главный библиотекарь, декан, а позднее ректор Университета, при нем развернулось строительство Университетского прекрасного архитектурного ансамбля. Умер он 12 февраля 1856г., так и не дождавшись признания своих идей. Эти идеи были враждебно встречены даже известными математиками того времени. Идеи Н.И. Лобачевского далеко опередили свое время, но все развитие науки подготовило их неизбежное торжество. Через пятнадцать лет после его смерти его открытие стало общеизвестным и определило на столетие вперед развитие геометрической науки, оказало сильнейшее влияние на другие разделы математики, явилось одной из предпосылок глубокого преобразования физических представлений о пространстве и времени.
    Представляет интерес характеристика А.Я. Хинчиным математического мышления, а точнее, его конкретно-исторической формы – стиля математического мышления. Раскрывая сущность стиля математического мышления, он выделяет четыре общие для всех эпох черты, заметно отличающие этот стиль от стилей мышления в других науках.
    Во-первых, для математика характерна доведенное до предела доминирование логической схемы рассуждения. Математик, потерявший, хотя бы временно, из виду эту схему, вообще лишается возможности научно мыслить. Эта своеобразная черта стиля математического мышления имеет в себе много ценного. Очевидно, что она в максимальной степени позволяет следить за правильностью течения мысли и гарантирует от ошибок; с другой стороны, она заставляет мыслящего при анализе иметь перед глазами всю совокупность имеющихся возможностей и обязывает его учесть каждую из них, не пропуская ни одной (такого рода пропуски вполне возможны и фактически часто наблюдаются при других стилях мышления).
    Во-вторых, лаконизм, т.е. сознательное стремление всегда находить кратчайший ведущий к данной цели логический путь, беспощадное отбрасывание всего, что не абсолютно необходимо для безупречной полноценности аргументации. Математическое сочинение хорошего стиля не терпит никакой “воды”, никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечений в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения. Лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.
    Корифеи науки, как правило, мыслят и выражаются лаконично во всех областях знания, даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики: Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.
    Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение не обязательно нужными (пусть даже приятными и увлекательными для слушателей) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность.
    В-третьих, четкая расчлененность хода рассуждений. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик должен отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешения и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода.
    Для того чтобы сделать такие смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятий и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются; внутри каждого такого случая те подлежащие рассмотрению подслучаи, которые он содержит, также перенумеровываются (иногда, для различения, с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например, II 3, -это означает, что здесь начинается рассмотрение третьего подслучая второго случая, или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, всё излагаемое относится тoлько к этому случаю и подслучаю. Само собою разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собою.
    В-четвертых, скрупулезная точность символики, формул, уравнений. То есть “каждый математический символ имеет строго определенное значение: замена его другим символoм или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания”.
    Выделив основные черты математического стиля мышления, А.Я. Хинчин замечает, что математика (особенно математика переменных величин) по своей природе имеет диалектический характер, а, следовательно, способствует развитию диалектическогo мышления. Действительно, в процессе математического мышления происходит взаимодействие наглядного (конкретного) и понятийного (абстрактного). “Мы не можем мыслить линии, – писал Кант, – не проведя её мысленно, не можем мыслить себе три измерения, не проведя из одной точки трех перпендикулярных друг к другу линий”.
    Взаимодействие конкретного и абстрактного “вело” математическое мышление к освоению новых и новых понятий и философских категорий. В античной математике (математике постоянных величин) таковыми были “число” и “пространство”, которые первoначально нашли отражение в арифметике и евклидовой геометрии, а позже в алгебре и различных геометрических системах. Математика переменных величин “базировалась” на понятиях, в которых отражалось движение материи, — “конечное”, “бесконечное”, “непрерывность”, “дискретное”, “бесконечно малая”, “производная” и т.п.
    Если говорить о современном историческом этапе развития математического познания, то он идет в русле дальнейшего освоения философских категорий: теория вероятностей “осваивает” категории возможного и случайного; топoлогия – категории отношения и непрерывности; теория катастроф – категорию скачка; теория групп – категории симметрии и гармонии и т.д.
    В математическом мышлении выражены основные закономерности построения сходных по форме логических связей. С его помощью осуществляется переход от единичного (скажем, от определенных математических метoдов – аксиоматического, алгоритмического, конструктивного, теоретико-мнoжественного и других) к особенному и общему, к обобщенным дедуктивным построениям. Единство методов и предмета математики определяет специфику математического мышления, позволяет говорить об особом математическом языке, в котором не только отражается действительность, но и синтезируется, обобщается, прогнозируется научное знание. Могущество и красота математической мысли – в предельной четкости её логики, изяществе конструкций, искусном построении абстракций.
    Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики сoстоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых прежде всего в механике, астрономии, физике, то современный её язык – это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая.
    Язык современной вычислительнoй математики становится все более универсальным, способным oписывать сложные (многопараметрические) системы. Вместе с тем хочется подчеркнуть, что каким бы совершенным ни был математический язык, усиленный электронно-вычислительной техникой, он не порывает связей с многообразным “живым”, естественным языком. Мало того, разговорный язык является базой языка искусственного. В этом отношении представляет интерес недавнее открытие ученых. Речь идет о том, что древний язык индейцев аймара, на котором говорят примерно 2,5 миллиона человек в Боливии и Перу, oказался в высшей степени удобным для компьютерной техники. Еще в 1610 г. итальянский миссионер-иезуит Людовика Бертони, составивший первый словарь аймара, отмечал гениальность его создателей, добившихся высoкой логической чистоты. В аймара, например, не существует неправильных глаголов и никаких исключений из немногих четких грамматических правил. Эти особенности языка аймара позволили боливийскому математику Айвану Гусману де Рохас создать систему синхронного компьютерного перевода с любого из пяти заложенных в программу европейских языков, “мостиком” между которыми служит язык аймара. ЭВМ “Аймара”, созданная боливийским ученым, получила высокую оценку специалистов. Резюмируя эту часть вопроса о сущности математического стиля мышления, следует отметить, что его основным содержанием является понимание природы

  12. ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ
    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
    « РОССИЙСКАЯ ПРАВОВАЯ АКАДЕМИЯ
    МИНИСТЕРСТВА ЮСТИЦИИ РОССИЙСКОЙ ФЕДЕРАЦИИ »
    (РПА Минюста России)
    Юридический факультет
    Реферат
    «Роль математики в современном мире»
    Выполнил студент
    1 курса
    Очной формы обучения
    Масляев Алексей Владимирович
    Научный руководитель
    Крылов Григорий Олегович
    Преподаватель кафедры

    Москва 2010
    СОДЕРЖАНИЕ
    1. Содержание
    2. Введение
    3. Определения математики
    4. Основные этапы развития математики
    5. Роль математики в современном мире.
    6. В науке
    7. В развитии человеческого мышления
    8. В познании мира и самого себя
    9. В медицине
    10.Роль математики в юриспруденции
    11.Заключение
    12.Источники
    ВВЕДЕНИЕ
    Математика является экспериментальной наукой – частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса – каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений, сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.
    “No star wars – no mathematics”, – говорят американцы. Тот прискорбный факт, что с прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только “прикладные” науки.
    Ведь опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей (английский физик, химик и физик, химик, основоположник учения об электромагнитном поле) и Максвелл (заложил основы современной классической электродинамики и многое другое) написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету – удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и следовательно экономической (а также и военной) отсталостью. Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях эколого-экономического кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран.
    В настоящее время математика пропитывает насквозь всю нашу жизнь. Мы уже не представляем мир без всех многочисленных технических средств и приспособлений. А они каждый день совершенствуются. То, что еще 10 лет назад казалось фантастикой сейчас уже реальность. Кто-то скажет, что это заслуга различный прикладных наук, но он будет ошибаться, так как без математики ничего бы этого не было.

    ОПРЕДЕЛЕНИЕ МАТЕМАТИКИ

    Математика – область человеческого знания, изучающая математические модели, отражающие объективные свойства и связи. “Замечательно, – пишет В.А. Успенский, – что хотя математическая модель создается человеческим разумом, она, будучи создана, может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальности” Кроме того, математика дает удобные способы описания самых разнообразных явлений реального мира и тем самым выполняет роль языка науки. Наконец, математика дает людям методы изучения и познания окружающего мира, методы исследования как теоретических, так и практических проблем.

    Математика (греч. mathematike, от mathema – знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.

    Современное понятие математики – наука о математических структурах (множествах, между элементами которых определены некоторые отношения).

    У представителей науки начала 19 века, не являющихся математиками, можно найти такие общедоступные определения математики.

    “Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира” (Ф. Энгельс).

    “Математика – наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. Математика может быть чистой и прикладной.

    Математика делится на арифметику и геометрию; первая располагает цифрами, вторая – протяжениями и пространствами. Алгебра заменяет цифры более общими знаками, буквами; аналитика добивается выразить все общими формулами, уравнениями, без помощи чертежа” (В. Даль).

    Современная математика насчитывает множество математических теорий: математическая статистика и теория вероятности, математическое моделирование, численные методы, теория групп, теория чисел, векторная алгебра, теория множеств, аналитическая и проективная геометрия, математический анализ и т.д.

    ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ МАТЕМАТИКИ
    В истории математики традиционно выделяются несколько этапов развития математических знаний:
    1. Формирование понятия геометрические фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.
    2. Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о способах измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские , китайские и индийские математики древности.
    3. Появление в древней Греции математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклидаhttp://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%87%D0%B0%D0%BB%D0%B0_%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%B0.
    4. Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.
    5. В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной, и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости (функция) и ускоренного движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.
    6. В XIX—XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»: найти причину «непостижимой эффективности математики в естественных науках». В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.
    В НАУКЕ
    Известно, что математика никогда не бывает одна, она всегда к чему-то
    прикладывается! Это говорит о том, что ни одна другая наука не может существовать без математики. Следовательно, если бы человечество не создало мира математики, то оно никогда не смогло бы обладать НАУКОЙ !!!
    Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие. Исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.
    Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше!
    Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.
    Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы – логика и интуиция, анализ и конструкция, общность и конкретность.
    В ИНТЕЛЕКТУАЛЬНОМ РАЗВИТИИ ЛИЧНОСТИ
    В современной науке под образованием обычно понимают систему знаний, навыков, овладение которыми обеспечивает развитие интеллектуальных и духовных способностей личности, формирование основ её мировоззрения и морали, подготовку молодого человека к жизни и труду.
    На рубеже XX и XXI в.в. оно стало наиболее важной фундаментальной проблемой, ибо по утверждению немецкого философа М. Шелера, “Когда в трудной борьбе за новый мир новый человек дерзает создавать новые формы, центральной становится проблема образования человека”1 . Образование – проективный процесс, всей своей сущностью оно устремлено в будущее. Образование – это важнейший механизм развития не только индивида, но и общества в целом, механизм, направленный на формирование и развертывание физического, интеллектуального и духовного потенциалов общества в их различных видах и формах.
    Ещё одной важнейшей причиной нужды человечества в математике является воспитание в человеке способности понимать смысл поставленной перед ним задачи, умение правильно, логично рассуждать, усвоить навыки алгоритмического мышления. Каждому надо научиться анализировать, отличать гипотезу от факта, критиковать, понимать смысл поставленной задачи, схематизировать, отчётливо выражать свои мысли и т. п., а с другой стороны – развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения и т. д.). Иначе говоря, математика нужна для интеллектуального развития личности. В 1267 году знаменитый английский философ Роджер Бекон сказал: “Кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества.”
    В ПОЗНАНИИ МИРА И САМОГО СЕБЯ
    В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя. Математика заставляет нас думать, анализировать. В процессе поиска информации для приготовленного мною сообщения я нашла один интересный сайт. На нем люди разного возраста, образования, мировоззрения делились своими мнениями о математике, а именно: оставляли свои голоса за и против математики, за любовь или ненависть по отношению к ней. Вот что написал один из участников обсуждения: «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Прочитал массу учебников по высшей математике. Благодаря изучению высшей математики приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта. Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга».
    В МЕДИЦИНЕ
    Математика и математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью математика, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.
    Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются М.м. достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений.
    Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику и информатику. Наиболее развиты математике в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря математике значительно расширилась область познания основ жизнедеятельности и появились новые высокоэффективные методы диагностики и лечения; Математика лежит в основе разработок систем жизнеобеспечения, используются в медицинской технике.
    Все большую роль во внедрении математики в медицину играют ЭВМ. В частности, применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. Математика смыкается с методами кибернетики информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики.
    Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения).
    РОЛЬ МАТЕМАТИКИ В ЮРИСПРУДЕНЦИИ
    На современном этапе развития юридической науки увеличивается объем нормативно-правовой, криминологической, уголовно-статистической и иной информации, особую актуальность приобретает анализ математических средств и методов исследования разнообразных правовых явлений и процессов.
    Математика все в большей степени становится необходимым атрибутом юридической науки. Это объясняется рядом существенных причин.
    Во-первых, органическим единством природы и общества. Общество состоит из значительного числа экономических, социальных, правовых и иных систем. Функционирование и развитие последних (включая и объекты государственно-правовой реальности) представляют собой естественно-исторический и управленческо-информационный процесс, который должен изучаться с математической точностью.
    Во-вторых, правовые системы, явления и процессы (прежде всего механизмы правотворчества, правового регулирования, законности, борьбы с преступностью) обладают и количественной мерой (количеством норм, связей, интенсивностью потоков информации, степенью развития, целенаправленности и т.д.).
    В-третьих, в юридических науках в связи с правовой информатизацией общества, созданием информационных комплексов и систем в области права и решением на компьютерах юридических задач возникло значительное число проблем, связанных с оптимизацией функционирования правовых систем, юридических органов и процессов. Эти проблемы не могут быть решены без привлечения разнообразных математических методов, так как сущность оптимизации в этом случае состоит в разработке формализованных способов достижения целей функционирования систем с наименьшими затратами материальных средств, времени в решении информационных, логических и математических задач.
    В-четвертых, математика как наука обладает содержательным понятийным аппаратом, с помощью которого представляется возможным отразить в абстрактном виде структуру отдельных правовых систем, их цели, функции, происходящие в них процессы сбора, обработки и использования информации.
    В-пятых, в юридической науке, особенно в таких ее областях, как государственное управление, правовое регулирование предпринимательской деятельности, криминология, криминалистика и правовая информатика, приходится часто иметь дело с количественными параметрами. Последние касаются объема информации, поступающей в государственные органы, количественных оценок правового регулирования, качества и объема промышленной продукции, состояния и уровня преступности, криминалистических показателей и т.п.
    К сожалению, об аргументах в пользу широкого применения математических средств и методов и о тесной взаимосвязи количественного анализа с качественным в юридических науках порой забывают. При этом ссылаются на сложность, социальный характер нормативно-правовых и иных связанных с ними систем, явлений и процессов; указывают на то, что юристы в процессе своей повседневной деятельности имеют дело с фактами не только объективного, но и субъективного порядка, трансформация которых в математическую форму не всегда может осуществляться в рамках положений и аксиом высшей и прикладной математики; отмечают невозможность математизации всех явлений правовой реальности.
    Общеизвестно, что объекты, изучаемые юридическими науками, действительно социальные, многомерные по своей природе и чрезвычайно сложные. Однако вопрос заключается в другом. Информатизация всех сторон жизни нашего общества, усложнение хозяйственных и социальных связей в условиях рыночных отношений вызывают естественное усложнение систем в сфере юридической деятельности. Это требует всестороннего, в том числе количественного, математического анализа отдельных правовых и связанных с ними систем, явлений и процессов в области государственного управления, правового регулирования предпринимательства, информационного обеспечения в области права, криминологии, информационного права, криминалистики и т.д. Социальный характер информационных правовых систем, явлений и процессов не может служить препятствием для разумного применения математических методов в юридических науках.
    Формализация фактов различного порядка, с которыми приходится иметь дело юристу, не всегда может осуществляться в рамках положений или правил классической высшей и прикладной математики. Поэтому необходима специальная теория измерения в области права, которая существенно отличается от существующей теории измерения, используемой в естественных науках.
    В то же время в социальной реальности (при исследовании экономических, управленческих, информационных и других проблем) сегодня активно используются теория вероятностей, математическая статистика, теория информации, математическая логика, теория графов, теория игр, линейное и динамическое программирование и другие разделы современной математической науки.
    В юридической сфере наметилось определенное число проблем и задач, не имеющих формально-алгоритмической разрешенности. Поэтому пока нет возможности, да и необходимости формализовать (отображение результатов мышления в точных понятиях и утверждениях), например, правовую систему общества в целом, ее структуру, функции, все потоки социально-правовой информации, задачи правового регулирования, так как все общественные системы, явления и процессы, в том числе и правовые, нельзя описать языком математики. И это, собственно говоря, не нужно. Главное, как справедливо в свое время заметил Д.А. Керимов, – это решение с помощью математических средств и методов частных проблем и задач юридической науки в целях дальнейшего совершенствования юридической деятельности в целом. Речь идет об использовании математических методов для исследования в отдельных юридических систем; о измерениях правовых установок, анализе правовых явлений, эффективности правовой информации и в статистической криминалистике.
    Заметим, что в рамках юридических наук и, в частности, в рамках правовой информатики и информационного права при изучении разнообразных социальных явлений и процессов давно эффективно используются теория вероятностей, математическая статистика, математическая логика, теория информации, исследование операций и другие математические науки и дисциплины. Математические методы, специфически преломляясь в учении о государстве и праве, обогащают и усиливают его собственные методы, но не заменяют их.
    В то же время при всех достоинствах математизации юридической науки и права нельзя преувеличивать ее возможности и сводить сущность государственно-правовых проблем к чистой математике.
    Ведущая роль в юридических науках принадлежит качественному анализу. Использование здесь математических средств и методов ориентировано в настоящее время, по существу, на решение частных практических проблем и задач. Математические средства и методы исследования правовых систем ограничиваются только измерением однородных связей данных систем; им недоступны всеобщие связи правовой системы общества в целом в силу их универсальности.
    Известную ограниченность математики в исследовании государственно-правовых проблем и задач сознают и ее представители. Поэтому так называемая математическая юриспруденция, которой еще предстоит детальная разработка разнопорядковых правовых систем, явлений, процессов и задач, должна опираться на общую теорию сущности изучаемых явлений и процессов; она может быть плодотворной в области права, если не забывать о естественных ограничениях и целесообразности ее применения на основе качественных знаний. Понятие “математическая юриспруденция” введено впервые в юридическую литературу Д.А. Керимовым в 1972 г. В настоящее время в общем виде уже можно говорить о содержании “математической юриспруденции. Короче говоря, под математикой в области юридических наук можно понимать науку о количественных и пространственных моделях, а также о теоретических информационных моделях в правовой действительности.
    ЗАКЛЮЧНИЕ
    Математика – это феномен общемировой культуры, в ней отражена история развития человеческой мысли. Разрушая математику, математическое образование, мы разрушаем общечеловеческую культуру, уничтожаем историю человечества. Всеобщая компьютеризация не только не уменьшила важность математического образования, но и, наоборот, поставила перед ним новые задачи. Снижение уровня математической образованности и математической культуры общества может превратить человека из хозяина компьютера в его прислугу и даже раба.
    В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя. Математика заставляет нас думать, анализировать. «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Благодаря изучению высшей математики и математики вообще приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта.
    Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга».
    Все мы хорошо понимаем важность физкультуры для полнокровной жизни каждого человека, важность тренировки тела. Столь же необходима (вряд ли кто-то будет спорить) физкультура мозга, тренировка ума. И все мы знаем, сколь богатые возможности для этого даёт математика. (Не только она, тренируют мозг и занятия с компьютерами, и, скажем, изучение языков, но, как мне кажется, всё же лучше всего для этого приспособлена именно математика.)
    ИСТОЧНИКИ
    1.. Бурбаки Н. Очерки по истории математики / Н. Бурбаки. – М.: Изд-во Ин. лит., 1972.
    2.. Гнеденко Б.В. Математика в современном мире / Б.В. Гнеденко. – Издательство Просвещение. – М.: Просвещение, 1980.
    3. Кудрявцев Л.Д. Мысли о современной математике и ее изучении / Л.Д. Кудрявцев. – М.: Просвещение, 1977.
    4. . [Электронный ресурс] http://ru.wikipedia.org/wiki
    5. . [Электронный ресурс] http://revolutionmathematics/
    6. История возникновения счета [Электронный ресурс] – Режим доступа: http://freecode.pspo.perm.ru/436/work/ss/ist_ch.html
    7. Роль математика в медицине. [Электронный ресурс] – Режим доступа: http://www.sciam.ru/2006/8/knizhnoe.shtml
    8. Математика в жизни общества [Электронный ресурс] – Режим доступа: http://revolutionmathematics/00082112_0.html
    9. О некоторых проблемах математического образования [Электронный ресурс] Режим доступа : http://www.mccme.ru/edu/index.php?ikey=tikh_rcme
    10. Основания математики как язык науки. [Электронный ресурс] – Режим доступа: http://www.situation.ru/app/rs/lib/pobisk/systema/main.htm
    11. Заявление группы математиков, членов Оргкомитета всероссийской конференции “Математика и общество. Математическое образование на рубеже веков”. [Электронный ресурс] – Режим доступа: http://life.ng.ru/education/2000-02-11/4_homomatema.html
    12. Матемизация научного знания как основание формирования общенаучных понятий. [Электронный ресурс] – Режим доступа: http://gnazim1.narod.ru/Matem1.htm
    13. Про математику. [Электронный ресурс] – Режим доступа: http://www.lovehate.ru/Mathematics/2 14. “Элементы высшей математики для юристов” авторы
    М.М. Рассолов, доктор юридических наук, профессор ,
    С.Г. Чубукова, кандидат юридических наук, старший преподаватель,
    В.Д. Элькин, кандидат технических наук, профессор.

  13. РОЛЬ МАТЕМАТИКИ В СОВРЕМЕННОМ МИРЕ
    Зотова Ирина Валерьевна
    Государственное бюджетное
    профессиональное образовательное
    учреждение  «Волгоградский колледж
    управления и новых технологий
    имени Юрия Гагарина», г. Волгоград
    Математика является значительной и важной частью общечеловеческой культуры. Накопление математических фактов на протяжении тысячелетий развития человечества привело к возникновению математики как науки около двух с половиной тысяч лет тому назад. Обращаясь к истории философии, следует отметить, что ученые, создававшие математику, рассматривали ее как составную часть философии, которая служила средством познания мира. Не случайно, квадривий, изучавшийся в Древней Греции, включал в себя арифметику, геометрию, астрономию и музыку. О значении математики для человечества говорит и тот факт, что книга Евклида “Начала” издавалась наибольшее число раз (не считая Библии) [3].
    Математика имеет богатейшие возможности воздействия на выработку научного мировоззрения и достижение необходимого общекультурного уровня. Пытаясь объяснить окружающий мир, задавая вопрос “почему?”, древние философы-софисты пришли к необходимости выделения математических знаний в самостоятельную науку. История зарождения великих математических идей, судьбы выдающихся математиков (Архимед, Галуа, Паскаль, Галилей, Гаусс, Эйлер, Ковалевская, Чебышев и др.) дают пищу для ума и сердца, примеры беззаветного служения науке, приводят к философским размышлениям и нравственным поискам.
    Для жизни в современном информационном обществе важным является формирование математического стиля мышления, проявляющегося в умении применять индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию[4]. Для того  чтобы уверенно чувствовать себя в современном мире, человек должен уметь проанализировать возникающую проблему, учесть все ее аспекты и сделать правильный выбор. Занятия математикой не столько самоцель, сколько средство к углублённому изучению теории и вместе с тем средство развития мышления, путь к осознанию окружающей действительности, тропинка к пониманию мира[3].
    Математика в настоящее время перестала быть предметом занятий только научной элиты. Сегодня занятия математикой привлекают к себе всё большее число одарённых людей. Значительно расширились область математических исследований и применения математического аппарата. Математические методы давно проникли далеко за пределы математики: в физику, новые отрасли техники, биологию, в экономику и другие социальные науки; без строгой математической логики невозможна работа юриста или менеджера. Информационные технологии способствовали появлению новых областей научных исследований, имеющих огромное значение как для самой математики, так и для всех наук, непосредственно связанных с ней[1].
    Известно,  что  математика  никогда  не  бывает  одна,  она  всегда  к  чему-то прикладывается!  Это  говорит  о  том,  что  ни  одна  другая  наука  не  может существовать  без  математики.  Исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности невозможны без царицы наук. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким  использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам[6].
    Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше!
    Таким образом, можно сделать вывод, что в современном мире математика пропитывает насквозь всю нашу жизнь. Люди любых профессий, так или иначе, применяют математические знания. Мы уже не представляем мир без всех многочисленных технических средств и приспособлений. А они каждый день совершенствуются.
    То, что еще 5 лет назад казалось фантастикой сейчас уже реальность. Кто-то скажет, что это заслуга различных прикладных наук, но он будет ошибаться, так как без математики ничего бы этого не было. Как говорил Андрей Колмогоров: «Математика – это то, посредством чего люди управляют природой и собой» [1].
    «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является» [3], – утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей.
    В биологических науках математический метод играет более подчинённую роль. Применение математического метода в биологических, социальных и гуманитарных науках осуществляется главным образом через информационно-коммуникационные технологии.  В ещё большей степени, чем в биологии, математический метод уступает своё место непосредственному анализу явлений во всей их конкретной сложности в социальных и гуманитарных науках. Существенным остаётся значение математической статистики для социальных дисциплин.
    Можно также утверждать, что в экономической науке не должно быть деления на «экономику» и «математику». Многие экономические явления, например, развитие фондовых рынков или инфляция, хорошо описываются при помощи математического аппарата теории хаоса или законов, которым подчиняется поведение динамических систем. Основная масса статей по экономике, так или иначе, использует математический аппарат. Либо это описание модели, либо эмпирическая проверка обсуждаемых гипотез или явлений средствами корреляционного или регрессионного анализа, либо удобная система обозначений, позволяющая в дальнейшем легко формулировать изучаемые отношения на количественном языке. Но количественное описание экономических законов средствами математики и статистики требует использования более сложного математического инструментария и в большинстве случаев оказывается более сложной задачей, чем описание законов природы[5]. И сейчас актуальны слова классика математической экономики Парето: «Экономисты, не знающие математики, находятся в положении людей, желающих решить систему уравнений, не зная ни того, что она из себя представляет, ни того даже, что представляет из себя каждое входящее в нее единичное уравнение» [1].
    Американский исследователь Ф. Дайсон пишет: “Математика для физики – это не только инструмент, с помощью которого она может количественно описать явление, но и главный источник представлений и принципов, на основе которых зарождаются новые теории”[1]. На примере ряда физических теорий можно наблюдать способность математического метода охватывать и самый процесс перехода познания действительности с одной ступени на следующую. Почти не существует области физики, не требующей употребления весьма развитого математического аппарата, но часто основная трудность исследования заключается не в развитии математической теории, а в выборе предпосылок для математической обработки и в истолковании результатов, полученных математическим путём.
    Прямые связи математики с техникой имеют характер применения уже созданных математических теорий к техническим проблемам. Создание метода наименьших квадратов связано с геодезическими работами; изучение многих новых типов дифференциальных уравнений в частных производных было начато с решения технических проблем; операторные методы решения дифференциальных уравнений были развиты в связи с электротехникой. Из запросов связи возник новый раздел теории вероятностей — теория информации. Задачи синтеза управляющих систем привели к развитию новых разделов математической логики. Наряду с нуждами астрономии решающую роль в развитии методов приближённого решения дифференциальных уравнений играли технические задачи. Целиком на технической почве были созданы многие методы приближённого решения дифференциальных уравнений в частных производных и интегральных уравнений. Задача быстрого фактического получения численных решений приобретает большую остроту с усложнением технических проблем. В связи с возможностями, которые открыли компьютеры для решения практических задач, всё большее значение приобретают численные методы. Высокий уровень теоретической математики дал возможность быстро развить методы вычислительной математики. Вычислительная математика сыграла большую роль в решении ряда крупнейших практических проблем, включая проблему использования атомной энергии и космические исследования[4].
    Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых, прежде всего в механике, астрономии, физике, то современный её язык – это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая. Выдающийся учёный Н. Винер – в 1945–1947 заинтересовался системами с обратной связью и проблемами передачи, хранения и переработки информации. Новую науку – общую теорию управления и связи – он назвал кибернетикой[2].
    Может возникнуть вопрос: «А присутствует ли математика в архитектуре?». Тесная связь архитектуры и математики известна давно. Хороший архитектор должен знать аналитическую геометрию и математический анализ, основы высшей алгебры и теории матриц, владеть методами математического моделирования и оптимизации.  Достаточно взглянуть на здания, и мы тут же увидим знакомые геометрические фигуры: параллелепипед, треугольные фронтоны, полукруглые и прямоугольные окна.… И это лишь малая часть геометрических фигур, которые радуют глаз при взгляде на красивые здания и сооружения. До определенного момента в истории  математика и архитектура развивались в тесной взаимосвязи. В XVIII веке математика и архитектура начинают развиваться параллельно. Изобретение компьютера послужило отправной точкой для повторного проникновения математики в архитектуру[6].
    Математика используется, в том числе, и для решения строительных задач. Конечно, существуют сложные строительные задачи – такие, например, как расчет прочности несущих элементов здания. Здесь могут применяться громоздкие математические формулы, объемные таблицы сопротивления материалов и емкие расчеты. Но существуют более простые задачи, с которыми сталкивается буквально каждый строитель – практик. Например, широко известна строительная задача, которую с успехом решает математика. Одним из самых важных условий при постройке нового дома всегда было правильно разметить углы. Но как получить прямой угол? Ответ на этот вопрос дал греческий математик Пифагор, сформулировав и доказав свою известную теорему. С тех пор задача разметки углов в профессиональном строительстве решается именно через прямоугольный треугольник.
    С развитием технологий математика начинает влиять и на процессы проектирования и строительства. Так  В. Г. Шухов (имя которого носит университет) был блестящим математиком. Виртуозное соединение научных поисков с практическими знаниями во многих областях техники и технологии позволили Шухову сделать множество открытий и изобретений. Уникальным достижением, демонстрирующим победоносный союз науки и производства, была выставка в Нижнем Новгороде 1896 года. Строительной фирмой, главным инженером которой в то время был В.Г. Шухов, построено 8 павильонов, общей площадью 25 тыс.м2. Конструкции каждого павильона уникальны, ни одного повторяющегося решения не позволил себе великий инженер. На примере этих построек можно говорить о формообразующей роли математики. Идя от математических формул, Шухов пришел к конструктивно совершенным и легким строительным конструкциям. Творчество В. Г. Шухова — пример уникального синтеза теоретических и практических задач[6].
    Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.
    Важнейшей  причиной  нужды  человечества в математике  является  воспитание  в  человеке  способности  понимать смысл  поставленной  перед  ним  задачи, умение  правильно,  логично рассуждать,  усвоить  навыки  алгоритмического  мышления[2].  Каждому  надо  научиться  анализировать,  отличать  гипотезу  от факта,  критиковать,  понимать  смысл  поставленной  задачи, схематизировать,  отчётливо  выражать  свои  мысли  и  т. п.,  а  с другой  стороны  –  развить  воображение  и  интуицию (пространственное  представление,  способность  предвидеть результат  и  предугадать  путь  решения  и  т. д.).  Иначе  говоря, математика  нужна  для  интеллектуального  развития личности. В 1267  году  знаменитый  английский  философ  Роджер  Бекон  сказал: “Кто  не  знает  математики,  не  может  узнать  никакой  другой науки и даже  не  может  обнаружить  своего  невежества”.
    Библиографический список
    Гнеденко, Б. В. Математика и математическое образование в современном мире / Б. В. Гнеденко. – М.: Просвещение, 2005. – 177 с.
    Колмогоров, А. Н. Математика в ее историческом развитии / А. Н. Колмогоров – М.: Наука, 2005. – 325 с.
    Курант, Р. Что такое математика?: Перевод с английского / Р. Курант, Г. Роббинс. – М.: Просвещение, 2007. – 190 с.
    Пойа, Д. Математика и правдоподобные рассуждения: Перевод с английского / Д. Пойа. – М.: Наука, 2005. – 178 с.
    Пойа, Д. Математическое открытие: Перевод с английского / Д. Пойа. – М.: Наука, 2007. – 213 с.
    Фор, Р. Современная математика: Перевод с английского / Р. Фор, А. Кофман, М. Дени-Папен. – М.: Мир, 2006. – 311 с.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *