Вопрос о том, каждый ли из нас может стать гением, имеем ли мы возможность безграничного развития или всего лишь загнаны в рамки собственной наследственности, давно интересует не только ученую общественность, но и простого обывателя. Некоторые утверждают, что гены это некий эфемерный объект, подобно фатуму, и сваливать на него человеческие поражения и победы — верх инфантильности. Другие считают гены основой для формирования личности. Что же на сегодняшний день известно о генах и их влиянии на поведение человека?
Достаточно давно было выявлено, что некоторые болезни обусловлены генетикой, так например, болезнь Дауна, Альцгеймера, аутизм. Известны также изменения генома, при которых ребенок не способен к полноценному интеллектуальному развитию. Однако интеллектуальные способности человека слишком сложная система, здесь участвуют целые комплексы генов, и разобраться в них помогают исследования на животных, чаще всего мышах.
Так ученые в США искусственно добивались мутации определенных генов у мышей и затем наблюдали за их реакциями и жизнедеятельностью. Оказалось, некоторые мутации делали мышей «умнее» (они быстрее запоминали и узнавали объекты, лучше ориентировались в пространстве и справлялись с задачами), другие — «глупее». То есть умные мыши, а значит и люди, генетически отличны от своих глупых собратьев.
А что касается добра и зла? На этот вопрос попытались ответить голландские ученые, исследовавшие три поколения одной семьи. 14 мужчин из этой семьи отличались агрессивностью, импульсивностью, совершали незаконные и опасные поступки, например, одного из них судили за избиение родной сестры.
Выяснилось, что такое неблаговидное поведение мужской части было обусловлено «заболеванием», которое передавалось по Х-хромосоме. Женщины были здоровыми носителями, а «симптомы» проявлялись только у мужчин.
При введении такой же мутации в мышиные гены, испытуемые превращались в сумасшедших убийц, бездумно нападали на своих сородичей, жестоко их атаковали без повода.
Сами ученые не считают, что ими открыты гены агрессии, так как даже в рассмотренной семье, где у всех мужчин гены имели одинаковую мутацию, поведение их значительно отличалось. Поведенческая система так же сложна, как интеллект, и одним конкретным геном здесь не обойдешься.
Интересные данные о репродуктивном поведении были получены из наблюдений за двумя видами мелких грызунов полевок: горной и прерийной. Внешне они совершенно одинаковы, но самцы горной полевки ведут себя как полигамы и стремятся спариться с любой доступной самкой. С самцами прерийной полевки дело обстоит наоборот: они полностью моногамны, верны одной самке до конца жизни.
Как выяснилось, самцы одного вида отличаются от других геном, который регулирует усваивание организмом гормона вазопрессина. У самцов дон-жуанов ген блокировал восприятие гормона, поэтому они чувствовали себя холостыми и соответствующим образом себя вели.
Кроме того, было доказано, что тревожность и склонность к депрессиям у людей тоже обуславливается наследственностью. В этом случае самочувствие регулируется посредством серотонина и дофамина, они обеспечивают связь между нервными клетками. Переизбыток дофамина вызывает повышенную активность, а отсутствие приводит к обратным результатам, вплоть до отказа от пищи и смерти.
Человек, у которого мало дофамина скорее всего станет альпинистом, парашютистом или выберет другую экстремальную профессию, в отличие от того, чьи гены позволяют наслаждаться жизнью в спокойной домашней атмосфере.
Итак, наследственность дает нам определенные плюсы и минусы, а то, как мы будем использовать этот капитал, зависит только от нас, нашей культуры, морали и воспитания.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами. Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914. См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005. Александр Марков
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами. Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914. См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005. Александр Марков Похожая статья, но с другими примерами: Слово о генетике поведения
Мораль для ЛЛ: все признаки особи зависят от двух вещей: генов и окружающей среды. Но это вы и так знаете. А если интересно, в какой степени зависит,-то тут уже надо читать.
Факты, добытые нейробиологами, говорят о материальной, нейрологической природе психики. Но для того, чтобы душа во всех ее проявлениях могла эволюционировать, этого, строго говоря, еще недостаточно. Эволюционировать могут не все признаки, а только генетически обусловленные. Чтобы меняться под действием отбора, признак должен быть врожденным, и он должен быть подвержен наследственной изменчивости. Но в первом приближении она все-таки верна, а для наших текущих целей этого достаточно).
Но что такое приобретенный признак? Бывают ли вообще признаки, совершенно не зависящие от генов? Вопрос может показаться странным: ясно ведь, что многое в нашем поведении и внешнем облике никак не связано с генами. Например, одежда, прическа, привычки, манера речи…
Хотя, если подумать, стиль одежды зависит от характера, от склада личности, желания или нежелания следовать моде, а склад личности — он ведь может зависеть от генов? Пожалуй, не все здесь так уж очевидно.
Степень врожденности и приобретенности признака на самом деле относительна: она зависит, с одной стороны, от вариабельности генов в популяции, с другой — от вариабельности среды. Почему так? Попробуем разобраться.
Когда генетики говорят о наследуемости признака, они имеют в виду, собственно, не признак как таковой, а различия по этому признаку, существующие между особями в изучаемой популяции. Если различий нет, если все особи по данному признаку одинаковы (скажем, имеют абсолютно одинаковую степень агрессивности), то генетики не смогут даже подступиться к такому признаку.
Например, если в популяции нет особей с числом сердец, отличным от одного, и если никакие известные мутации и никакие изменения среды не приводят к появлению двух или трех сердец, то генетики не смогут понять, от каких генов зависит количество сердец. Ясно, что признак наследственный, то есть какие-то гены его все-таки определяют, но какие именно — неизвестно.Признаки такого рода — абсолютно неизменчивые — генетиками, как правило, вообще не рассматриваются.
Изменчивость по любому признаку определяется отчасти генетическим разнообразием особей в популяции, отчасти — разнообразием условий среды. Под степенью наследуемости признака генетики понимают ту часть изменчивости по этому признаку, которая объясняется генетическим разнообразием. Это можно определить по силе корреляции между наличием тех или иных аллелей и выраженностью признака. “Степенью приобретенности”, соответственно, можно назвать обратную величину: ту долю фенотипической изменчивости, которая не объясняется генетической вариабельностью.
Отсюда напрямую вытекает относительность этих величин, то есть их зависимость от состояния генофонда популяции и вариабельности среды. Допустим, мы вывели “чистую линию” мышей или мух, у которых все гены одинаковы, как у однояйцевых близнецов. Если в этой лабораторной популяции и будет изменчивость по каким-то признакам, то вся она по определению будет объясняться только факторами. Иными словами, все признаки будут обладать нулевой наследуемостью.
Если же мы возьмем обычную, то есть генетически разнообразную, популяцию мышей и нам каким-то чудом удастся создать для всех особей абсолютно одинаковые условия развития, то наследуемость большинства признаков приблизится к единице.
Тут есть всякие осложняющие моменты, такие как стохастика индивидуального развития, эпигенетическое наследование, материнские эффекты и прочее, но давайте на минутку об этом забудем. Важно, что степень наследуемости любого признака может меняться в зависимости от ситуации. Между тем именно от нее, от этой вроде бы чисто формальной величины, зависят возможности эволюционных изменений данного признака. При нулевой наследуемости признак эволюционировать не может, как бы сильно он ни влиял на жизнеспособность и плодовитость. Отбор на такой признак действовать будет (например, особи с сильно развитым признаком будут оставлять больше потомства, чем особи со слабо развитым признаком), но это не приведет к эволюционным изменениям, потому что фенотипические различия, по которым идет отбор, не наследуются. Чем выше наследуемость, тем быстрее будут идти эволюционные изменения (то есть изменения частот аллелей в генофонде популяции) при фиксированной интенсивности отбора.
Некоторые признаки (например, количество рук) зависят от генов очень сильно, а от среды почти совсем не зависят. Но это только до тех пор, пока среда не выкинет какой-нибудь фокус! Включите в состав среды, в которой развивается эмбрион, лекарство под названием талидомид, которое некогда прописывали беременным женщинам в качестве снотворного и успокаивающего. Такое изменение среды запросто может привести к тому, что ребенок родится без рук, хотя гены у него в полном порядке. Если бы талидомид был рассеян повсюду и от него невозможно было спастись, то пошел бы отбор на выработку устойчивости к талидомиду. Отбор поддерживал бы мутации, блокирующие влияние талидомида на эмбрион. Гены, в которых закрепились бы такие мутации, мы стали бы называть генами двурукости или генами наличия рук, хотя такой ген на самом деле может быть просто геном фермента, расщепляющего талидомид. Но основное фенотипическое проявление этого гена будет состоять именно в том, что у ребенка будет две нормальные руки. И теперь мы уже не сказали бы, что у ребенка без этого гена “с генами все в порядке”.
Другие признаки, вроде бы зависят почти исключительно от среды, а их генетическая составляющая пренебрежимо мала — но только до тех пор, пока мы не попадем в некие особые условия, в которых роль среды сойдет на нет, а генетическая составляющая выйдет на первый план.
Мораль в том, что абсолютно любой поведенческий или психологический признак в принципе находится под влиянием генов и при определенных условиях может эволюционировать. Поскольку эволюция (хотя бы за счет дрейфа — случайных колебаний частот аллелей) идет постоянно и неизбежно, то можно даже сказать, что абсолютно все признаки, по которым есть минимальная наследственная вариабельность, хоть чуть-чуть, но эволюционируют. Вопрос в том, какие из них действительно это делают (или делали в прошлом) с ощутимой скоростью, а какие — не очень. Какие менялись направленно, под действием положительного отбора полезных мутаций, какие лишь вяло колебались за счет дрейфа, а какие прочно удерживались на постоянном уровне за счет очищающего отбора, отбраковывавшего отклонения от “нормы” в любую сторону.
На сегодняшний день у биологов нет ни малейших сомнений в том, что поведение животных, включая человека, во многом зависит от генов. Но гены, конечно, определяют не поведение как таковое. Они определяют лишь общие принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти “вычислительные устройства” способны к обучению и постоянно перестраиваются в течение жизни.
Сложность и неоднозначность взаимосвязей между генами и поведением вовсе не противоречат тому факту, что определенные мутации могут менять поведение вполне определенным образом. При этом мы, конечно, понимаем, что каждый поведенческий (и вообще любой) признак в конечном счете зависит не от одного-двух, а от огромного множества генов, работающих согласованно. Если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что “ученые открыли ген речи”. Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать. И вовсе не факт, что изменения именно этого гена в ходе эволюции привели к появлению языковых способностей у наших предков. Это могло быть так, но могло быть и иначе. Эволюционное приобретение лингвистических способностей могло быть связано с закреплением мутаций либо в этом гене, либо в каком-то другом, либо в нескольких генах параллельно. Это были мутации, которые сделали эти гены такими, какие они есть сейчас. Не исключено, что эти мутации сегодня имеются у 100% людей. Поэтому “выловить” их, сравнивая между собой человеческие геномы, невозможно. Их можно обнаружить, лишь сравнивая геномы людей с геномами других приматов.
А. Марков “Эволюция человека: Обезьяны нейроны и душа” http://www.e-reading.club/book.php?book=1024502
Александр Марков
Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию
Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов
Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.
egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Гены, мозг и социальное поведение связаны сложными отношениями. Эти отношения действуют на трех временных масштабах: (i) на уровне физиологии — влияя на активность мозга (сплошные линии), (ii) на уровне развития организма — через экспрессию генов в мозге и эпигенетические модификации (линия из точек), (iii) на эволюционном уровне — через естественный отбор (пунктирная линия). Направление влияния: розовые стрелки — от социальных отношений к изменению функций мозга и поведения, стрелки цвета морской волны — от генов к социальному поведению. Изображенные животные (сверху по часовой стрелке): зебровая амадина (T. guttata), цихлида (A. burtoni), медоносная пчела (A. mellifera), дрозофила (D. melanogaster), прерийная полёвка (M. ochrogaster), крыса (R. norvegicus), огненный муравей (S. invicta). Курсивом на фотографиях даны названия генов, связанных с тем или иным видом социального взаимодействия. Изображение из обсуждаемой статьи Robinson et al.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило. Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином.
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов.
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами. Списоклитературы
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.
Список литературы
Люди отличаются друг от друга рядом психологических характеристик. Эти различия вызваны как неодинаковыми условиями жизни, так и несходными генотипами, поскольку генотипы людей содержат разные формы генов. Соотносительный вклад наследственности и среды в разнообразие людей по психологическим свойствам и поведению изучает психогенетика. Для оценки влияния наследственности и среды на поведение человека ученые сравнивают людей, имеющих различную степень генетической общности (однояйцевых и многояйцевых близнецов, родных и сводных братьев и сестер, детей и их биологических и приемных родителей).
Многие гены существуют в нескольких формах, подобно тому, как есть разные формы гена, определяющего цвет глаз. Некоторые гены имеют десятки форм. Генотип конкретного человека содержит два экземпляра каждого гена, формы которых могут быть разными, а могут быть и одинаковыми. Один унаследован от отца, другой – от матери. Сочетание форм всех генов уникально для каждого человеческого организма. Эта уникальность лежит в основе генетически обусловленных различий между людьми. Вклад генетических различий в разнообразие людей по психологическим свойствам отражает показатель, называемый “коэффициент наследуемости”. Например, для интеллекта коэффициент наследуемости составляет, по меньшей мере, 50%. Это не означает, что 50% интеллекта дано человеку от природы, а остальные 50% нужно добавить путем обучения, тогда интеллект будет 100 баллов. Коэффициент наследуемости не имеет отношения к конкретному человеку. Его вычисляют, чтобы понять, в чем причина отличия людей друг от друга: возникают ли различия из-за того, что у людей неодинаковые генотипы, или потому, что их по-разному учили. Если бы коэффициент наследуемости интеллекта оказался близок к 0%, то можно было бы сделать вывод, что только обучение формирует различия между людьми, и применение одних и тех же воспитательных и образовательных приемов к разным детям будет всегда приводить к одним и тем же результатам. Высокие значения коэффициента наследуемости означают, что даже при одинаковом воспитании дети будут отличаться друг от друга в силу своих наследственных особенностей. Конечный результат, однако, не предопределен генами. Известно, что дети, усыновленные в благополучные семьи, по уровню интеллектуального развития оказываются близки к своим приемным родителям и могут значительно превосходить биологических. В чем же тогда выражается влияние генов? Поясним это на примере конкретного исследования.*
Ученые обследовали две группы приемных детей. Условия в приемных семьях были у всех одинаково хорошими, а биологические матери детей различались по уровню интеллекта. Биологические матери детей из первой группы имели интеллект выше среднего. Примерно половина детей из этой группы продемонстрировала интеллектуальные способности выше средних, другая половина – средние. Биологические матери детей второй группы имели несколько сниженный (но в пределах нормы) интеллект. Из этой группы 15% детей имели такие же невысокие оценки интеллекта, у остальных детей уровень интеллектуального развития соответствовал среднему. Таким образом, при одинаковых условиях воспитания в приемных семьях, интеллект детей, в определенной степени, зависел от интеллекта их кровных матерей.
Приведенный пример может служить иллюстрацией существенных различий между понятием наследуемости психологических качеств и наследуемости некоторых физических особенностей человека, таких как цвет глаз, кожи и т.д. Даже при высоком уровне наследуемости психологического признака генотип не предопределяет его конечного значения. От генотипа зависит, как ребенок будет развиваться в определенных условиях среды. В некоторых случаях генотип задает “пределы” выраженности признака.
К содержанию
Влияние наследственности на интеллект и характер в разных возрастах
Исследования показывают, что гены отвечают за 50-70% разнообразия людей по уровню интеллекта и за 28-49% различий по выраженности пяти “универсальных”, наиболее важных, свойств личности:
уверенности в себе,
тревожности,
дружелюбию,
сознательности,
интеллектуальной гибкости.
Это данные – для взрослых. Однако степень влияния наследственности зависит от возраста. Результаты психогенетических исследований не подтверждают распространенное мнение, что с возрастом гены все меньше влияют на поведение человека. Генетические различия, как правило, сильнее проявляются в зрелом возрасте, когда характер уже сформировался. Значения коэффициента наследуемости большинства изученных психологических свойств для взрослых выше, чем для детей. Наиболее точные данные получены по наследственной обусловленности интеллекта. В младенчестве внутрипарное сходство многояйцевых близнецов такое же высокое, как для однояйцевых, но после трех лет оно начинает снижаться, что можно объяснить большим влиянием генетических различий. При этом нарастание различий происходит не линейно. В ходе развития ребенка есть этапы, в которые различия между детьми вызываются преимущественно влиянием среды. Для интеллекта это возраст 3-4 года, а для формирования личности – предподростковый возраст 8-11 лет.
Кроме того, в разных возрастах действуют разные генетические факторы. Так среди наследственных факторов, обуславливающих различия по интеллекту, есть как стабильные, т.е. действующие во всех возрастах (это, возможно, гены, связанные с так называемым “общим интеллектом”), так и специфические для каждого периода развития (вероятно, гены, определяющие развитие частных способностей).
К содержанию
Влияние наследственности на асоциальное поведение
Поскольку во всех развитых странах преступность и алкоголизм биологических родителей являются распространенными причинами утраты ребенком кровной семьи и помещения в приемную, мы подробнее рассмотрим данные психогенетики о влиянии наследуемости на эти формы поведения. Семейные и близнецовые исследования криминального поведения проводятся уже более 70 лет. Они дают очень разные оценки наследуемости, наиболее часто попадающие в диапазон 30-50%. “Верхние” значения наследуемости получают при изучении близнецов. Некоторые исследователи считают, что близнецовый метод может давать завышенные оценки наследуемости, так как он не всегда позволяет отделить генетические влияния от особых условий среды, в которых растут однояйцевые близнецы. Методом изучения приемных детей получают значения коэффициента наследуемости примерно в 2 раза ниже, чем при изучении близнецов.
К содержанию
Датское исследование приемных детей
Рисунок 1. Количество проанализированных семей,
различающихся по наличию судимости у биологического и приемного отца
(датское исследование).
Наиболее систематические исследования наследуемости криминального поведения методом изучения приемных детей были проведены в скандинавских странах – Дании и Швеции. Благодаря сотрудничеству родителей-усыновителей и ряда органов власти, датским ученым удалось проследить судьбу более 14 000 лиц, усыновленных в период с 1924 по 1947 гг. На рисунках 1 и 2 показаны результаты исследования судимости у мужчин, выросших в приемных семьях. Они относятся только к преступлениям против собственности, поскольку количество преступлений, связанных с применением насилия, было мало.
Рисунок 2. Доля сыновей, имевших судимости, в семьях,
различающихся по наличию судимости у биологического и приемного отца
(датское исследование).
Из рисунка 2 видно, что доля осужденных среди детей, биологические отцы которых были преступниками, несколько повышена по сравнению с теми детьми, биологические родители которых не нарушали закон. Кроме того, оказалось, что чем больше судимостей у биологического отца, тем выше риск для потомка стать преступником. Было показано также, что братья, усыновленные разными семьями, имели тенденцию к конкордантности (совпадению) по преступному поведению, особенно в тех случаях, когда их биологический отец был преступником. Эти данные свидетельствуют об определенной роли наследственности в повышении риска криминального поведения. Однако, как и из приведенного выше примера с интеллектом, из данных на рисунке 2 следует, что неблагоприятная наследственность не предопределяет будущее ребенка – из мальчиков, биологические отцы которых были преступниками, впоследствии нарушили закон 14%, остальные 86% не совершили противоправных действий.
Кроме того, оказалось, что на детей с неблагоприятной наследственностью приемная семья оказывает особенно сильное влияние, которое может быть как положительным, так и отрицательным. Из мальчиков, выросших в приемных семьях, 16% впоследствии совершили преступления (против 9% в контрольной группе). Среди биологических отцов этих детей 31% имели проблемы с законом (против 11% в контрольной группе). Т.е. хотя уровень преступности среди приемных детей был выше, чем в обществе в среднем, он был почти в два раза ниже, чем среди их биологических отцов. По мнению ряда ученых, это свидетельствует о том, что благоприятная обстановка в приемной семье снижает риск криминального поведения у детей с отягощенной наследственностью.
Но в некоторых случаях семейная среда может усиливать риск криминального поведения. Как видно из рисунка 2, дети, у которых и биологический и приемный отец имели судимости, совершали преступления чаще других. (К счастью, таких семей было очень мало (рис.1)). Это значит, что существуют генотипы, обладающие повышенной уязвимостью к неблагоприятным аспектам семейной среды (подобные явления в психогенетике называют генотип-средовым взаимодействием).
К содержанию
Шведское исследование
При исследовании приемных детей в Швеции ученые сначала не нашли даже слабой связи между судимостью детей, воспитанных приемными родителями, и поведением их биологических отцов. Среди шведов преступления были в основном следствием злоупотребления алкоголем. Когда ученые исключили из анализа этот вид преступления, они обнаружили слабую положительную связь между наличием судимости у потомства и их кровных отцов (рис. 3). При этом преступления в обоих поколениях оказались не тяжкими. В основном это были кражи и мошенничество.
Рисунок 3. Процент судимых среди усыновленных лиц
в зависимости от типа семьи
(шведское исследование).
Подтвердилась и чувствительность детей с наследственной отягощенностью к особенностям приемной семьи. Среди усыновленных шведов не наблюдалось повышения уровня преступности по сравнению со средним показателем по стране, несмотря на то, что среди их биологических родителей процент осужденных был увеличен. Среди приемных родителей-шведов не было лиц, имевших судимости. Т.е. максимально благоприятная семейная среда “нейтрализовала” эффект генетического груза. С другой стороны, наиболее высокий риск нарушить закон наблюдался у тех детей с неблагоприятной наследственностью, приемная семья которых имела низкий социально-экономический статус (рис. 3).
К содержанию
Американское исследование
Рисунок 4. Результаты изучения причин, приводящих к формированию асоциальной личности,
в американском исследовании приемных детей
(стрелки означают статистически значимую связь между характеристиками родителей и формированием асоциальных наклонностей у детей).
Скандинавские исследования включали в себя анализ поведения приемных детей, родившихся в первой половине 20-го века. Сходные результаты были получены и в современной работе американских ученых из штата Айова. Правда, в ней анализировали не судимость, а наличие у приемных детей склонности к асоциальному поведению более широкого спектра. Оценивали поведение, которое служит основанием для диагноза “асоциальное расстройство личности” и включает в себя частое совершение поступков, за которые могут арестовать, а также такие черты как лживость, импульсивность, раздражительность, пренебрежение безопасностью, безответственность и бессовестность. Учитывали также целый ряд характеристик приемной семьи, которые могли бы повлиять на формирование подобных наклонностей. На рисунке 4 перечислены эти характеристики и показаны основные результаты исследования на тот момент, когда усыновленные лица уже достигли взрослого возраста (им было от 18 до 40 лет). Были проанализированы данные только о мужчинах, поскольку количество женщин с “асоциальным поведением” оказалось слишком мало. Из 286 исследованных мужчин сорока четырем был поставлен диагноз “асоциальное расстройство личности”. Результаты свидетельствовали, что в развитие данного расстройства вносят независимый вклад три фактора:
судимость биологического родителя (генетический),
пьянство или асоциальное поведение одного из членов приемной семьи (средовой),
помещение ребенка с неблагоприятной наследственностью в семью с низким социально-экономическим статусом (генотип-средовое взаимодействие).
К содержанию
Что представляет собой наследственная предрасположенность к асоциальному поведению?
Очевидно, что у человека гены не запускают конкретное поведение подобно тому, как это происходит с некоторыми инстинктивными действиями животных. Связь между риском преступного поведения и генами опосредствована психологическими особенностями. Причем известно, что на риск криминального поведения могут влиять различные неблагоприятные сочетания психологических свойств, и каждое из этих свойств находится под контролем нескольких или большого количества генов и разных факторов среды.
Первым кандидатом на роль биологического “субстрата” асоциальных наклонностей стала Y-хромосома (хромосома, которая содержится только в генотипе мужчин и определяет мужской пол). Примерно у одного из 1100 мужчин в результате биологических ошибок в сложном процессе создания зародышевой клетки в генотипе оказывается вместо одной две или более Y-хромосом. Эти мужчины отличаются невысоким интеллектом (у нижней границы нормы) и высоким ростом. В 60-х годах XX века было впервые показано, что среди отбывающих наказание преступников со сниженным интеллектом непропорционально много (4%) мужчин с лишней Y-хромосомой. Сначала связь между этим генетическим дефектом и криминальными наклонностями казалась очевидной: поскольку мужчины агрессивнее женщин, чаще совершают преступления и в отличие от женщин имеют Y-хромосому, наличие двух и более Y-хромосом должно приводить к формированию агрессивного “супермужчины”. Но в дальнейшем выяснилось, что преступники с лишней Y-хромосомой не более агрессивны, чем другие заключенные, и в тюрьму они попадают, в основном, совершив кражи. При этом у мужчин с данной генетической патологией была найдена связь между снижением интеллекта и вероятностью быть осужденным. Не исключено, однако, что сниженный интеллект влиял не на риск совершить преступление, а на риск быть пойманным и посаженным в тюрьму. Например, один из мужчин с лишней Y-хромосомой несколько раз проникал в дома с помощью взлома, когда хозяева находились в помещении.
Исследования мужчин с лишней Y-хромосомой позволяют сделать, по меньшей мере, два важных заключения. Во-первых, связь между генами и преступностью нельзя объяснить генетически обусловленным возрастанием агрессивности или жестокости, как можно было бы предположить, исходя из “здравого смысла”. Этот вывод согласуется и с данными исследований приемных детей, в которых влияние наследственности обнаружилось только для преступлений против собственности. Во-вторых, даже среди мужчин с такой очевидной наследственной аномалией, как лишняя Y-хромосома, большинство не становится преступниками, речь идет только о некотором повышении риска подобного поведения среди них.
С середины 90-х годов ученые проводят поиск конкретных генов, которые могли бы влиять на величину риска криминального поведения. Все полученные к настоящему времени данные еще нуждаются в подтверждении и уточнении. Однако заслуживает упоминания исследование, проведенное в Новой Зеландии. В нем было показано, что среди мальчиков, подвергавшихся жестокому обращению в семье, носители формы гена, обеспечивающего более высокую активность фермента МАОА в организме, были менее склонны к асоциальным поступкам, чем носители другой формы гена – низкоактивной. Среди детей, выросших в благополучных семьях, связи между асоциальными наклонностями и геном МАОА не было. Т.е. лица с определенными генетическими особенностями оказались менее уязвимыми к жестокому обращению с ними родителей. Это исследование заставило ученых задуматься о том, правомерно ли вообще говорить о наследственной предрасположенности (склонности) к асоциальному поведению. Возможно, более точным было бы понятие генетически обусловленной уязвимости (незащищенности) некоторых детей по отношению к неблагоприятным, травмирующим событиям.
Гены, которые нас воспитали
Андрей Константинов, «Русский репортер» № 7-2011
Скоро вместо гороскопов и психологических тестов мы будем заглядывать в хромосомы. Наука уже накопила немало сведений о том, как связаны гены человека и его психика. Если верить представителям науки психогенетики, то агрессия, альтруизм, интеллект и множество других качеств определяются не только воспитанием, но и наследственностью
Сейчас можно работать с ДНК и искать, какие молекулы контролируют поведение… Наука будет объяснять то, что мы сейчас не понимаем, — поведение, эти слова знаменитый нобелевский лауреат Джеймс Уотсон сказал в интервью «Русскому репортеру», когда два года назад приезжал Москву. Речь шла о том, каких значительных открытий стоит ждать.
Еще совсем недавно для изучения связи генов и психики существовал только один инструмент — однояйцовые близнецы. Ученые буквально охотились за братьями или сестрами, которым повезло родиться с одинаковым набором генов. Особенно ценными считались те экземпляры, которые воспитывались в разных семьях: только в этом случае можно относительно четко отделить влияние среды от вклада генов. Да и то подобные эксперименты до конца корректными назвать нельзя, ведь семьи-то хоть и разные, но, как правило, относящиеся к одной и той же культуре. Вот если бы один ребенок с младенчества рос в семье американского миллионера, а его однояйцового брата-близнеца воспитывал индийский крестьянин, тогда данные были бы объективными.
Но революция в молекулярной биологии не оставила в стороне поведенческие науки. С 1990-х годов идет поиск конкретных генов, влияющих на поведение и характер.
Еще в школьном курсе биологии нас учили, что один и тот же ген может присутствовать в разных вариантах — помните историю про монаха Менделя и цветки фасоли? Человеческая психика — явление не такое простое, как окраска цветка. Но особенности личности можно померить с помощью тестов. А потом посмотреть, какой вариант того или иного гена присутствует в хромосомах.
Конечно, не все так просто. На каждую черту характера могут влиять сотни генов. Не нужно забывать и о том, что наследуются не сами психические качества, а биологические факторы, влияющие на них. Роль генов больше всего напоминает регулятор громкости радиоприемника: можно усилить или ослабить звук, но слова песни от этого не изменятся. Точно так же гены могут увеличивать агрессивность человека, но куда он направит эту агрессию — на битье морд или на сочинение триллеров, — зависит от воспитания, образования и культуры. Альтруизм
Мы с детского сада привыкли делить людей на добрых и злых. Добрые — это те, кто дает нам поиграть своей машинкой, а злые — те, кто не дает. А что на этот счет написано в генетической карте, где тут «ген добра»? Есть такой ген. Его нашла в 2010 году группа ученых из Боннского университета. Проанализировав ДНК студентов, больше других склонных жертвовать деньги на благотворительность, они сосредоточились на гене COMT. Он связан с выработкой таких веществ, как дофамин, окситоцин и вазопрессин, относящихся к классу нейромедиаторов, их динамика регулирует наше социальное поведение.
У людей примерно поровну распределены два варианта этого гена: COMT-Val и COMT-Met. Те, кому выпал COMT-Val, дают на благотворительность в среднем в два раза больше, чем те, чьей судьбой стал COMT-Met.
Утешением «природным эгоистам» может послужить то, что проявления доброты связаны и со многими другими генами. Но если в генетическом паспорте человека COMT-Met сочетается с «плохими» вариантами генов OXTR и AVPR1, тоже влияющих на склонность людей совершать благородные поступки, то перед вами наверняка бесчувственный эгоист, сколько бы он ни доказывал обратное! Агрессия
В былые времена теологи любили поспорить о том, имеет ли зло собственную сущность или происходит от недостатка добра. Генетика однозначно свидетельствует: помимо слабых вариантов «генов добра» есть и собственно «гены зла», заставляющие людей и животных вести себя агрессивно.
На один из таких генов наткнулся голландский генетик Ганс Бруннер, исследовав семью, в трех поколениях которой 14 мужчин были настоящими злодеями и закоренелыми преступниками. Для каждого из них были характерны импульсивные вспышки ярости. Оказалось, что они связаны с мутацией гена, кодирующего фермент моноаминоксидазу-А. Провели эксперимент. Мышам «испортили» этот ген, и грызуны-мутанты стали яростно кидаться на своих собратьев. Очевидно, сюжеты фильмов типа «28 недель спустя» или «Я — легенда» не такие уж фантастические.
И все же в данном случае речь, скорее, идет о редком заболевании: эта мутация очень малочастотна. А злодеев так много! Среди людей есть и другие мутации, которые не выключают фермент полностью, как в той злополучной семье, но ослабляют его действие. Исследуя таких людей, ученые выяснили, что если они воспитываются в благоприятных условиях, то ничем не отличаются от прочих мальчиков и девочек, а вот в плохих условиях склонны вести себя значительно более агрессивно, чем их сверстники.
Кстати, группа исследователей из МГУ под руководством Марины Егоровой в 2009 году показала, что люди могут иметь «бойцовский ген». Но если у них развиты управляющие функции — самоконтроль, способность ставить цели и планировать свое поведение, — то они, наоборот, будут отличаться склонностью к сопереживанию и терпимостью, то есть как раз теми добродетелями, которых так не хватает агрессорам. Так что гены генами, а о воспитании забывать не стоит. Счастье
Каждый, конечно, сам кузнец своего счастья, но все же ковать его приходится из того материала, которым нас обеспечила природа. К сожалению, одни люди рождаются более склонными к тревоге и депрессии, чем другие. Близнецовые исследования, проведенные Кеном Кендлером, показали, что тревожность и депрессивность на 40–50% определяются наследственностью. Было найдено «вещество счастья» — нейропептид серотонин, недостаток которого и обеспечивает нам тревогу и плохое настроение. Антидепрессанты, такие как знаменитый прозак, усиливают действие серотонина.
Один из генов, регулирующих количество серотонина в мозге, был исследован Д. Мерфи и П. Лешем. Этот ген — регулятор транспортера серотонина под названием 5НТТ распространен в двух вариантах. Один способствует тревоге и тоске, а другой — наоборот.
Кстати, первый вариант этого гена существенно повышает вероятность вспышек агрессии, лишний раз подтверждая связь между агрессией и несчастьем. В общем, если при раздаче генетических карт вам выпал несчастливый вариант 5НТТ, лучше не поскупиться и инсталлировать вместо него счастливый. Конечно, если техника позволит. Интеллект
С «генами ума» ученые начали возиться еще в середине XX века, используя близнецовый метод. Было много скандалов, споров и даже обвинений в фальсификации результатов. Дискуссия из научной порой превращалась в политическую. Консерваторы считали, что ум может быть унаследован только от благородных родителей, а левые настаивали на всеобщем равенстве и призывали улучшать систему образования. Сейчас страсти слегка улеглись. Считается, что интеллект то ли наполовину, то ли на две трети определяется генами. Вопрос — какими именно.
Впервые об открытии «гена интеллекта» заявил еще в 1997 году Роберт Пломин, показавший, что у большинства исследованных им вундеркиндов одинаково изменен ген IGF2R. Предполагают, что этот вариант IGF2R связан с более эффективным поглощением углеводов мозгом. Воздействием этого гена можно объяснить изменение коэффициента интеллекта на 4 балла, что совсем не мало. Мужественность
Не приходится сомневаться, что многие гены «настоящего мужика» помещаются на хромосоме Y: она есть только у представителей мужского пола, и на ней должны накапливаться гены, полезные самцам. В журнале Nature даже публиковалась шуточная карта Y-хромосомы, на которой размещались гены любви к пиву, футболу и боевикам, памяти на анекдоты, неспособности к романтическим речам и так далее. В реальности все эти черты не управляются генами напрямую, а являются результатом отравления мозга мужским половым гормоном тестостероном. Но подробности работы этих генов пока неизвестны.
Зато известно другое: доминантными самцами не рождаются. Есть такая красивая аквариумная рыбка — хаплохромис. В присутствии доминантного самца подчиненные самцы некрасивые, почти бесцветные, самками не интересуются и тихо сидят в уголочке. Но стоит выловить доминанта, как у подчиненного самца в нейронах гипоталамуса включается ген egr1, запускающий на полную производство полового гормона, и бывший тихоня стремительно преображается, обретая цвет, лоск и крутизну.
Похожие изменения происходят и в мозге приматов, включая людей: под влиянием ситуации, поведения окружающих и собственных мыслей целые ансамбли генов способны включаться и выключаться в считанные минуты. Постоянство в любви
Начнем издалека. Живут себе два вида мелких грызунов — прерийная и горная полевка. Внешне их трудно различить: мышки — они и есть мышки. Но самцы прерийной полевки, выбрав самку, хранят ей верность всю жизнь, а вот у горной полевки самцы неразборчивы в связях и равнодушны к потомству.
Любовь до гробовой доски у самцов-грызунов, как и у самцов-людей, связана, помимо прочего, с нейромедиатором под названием вазопрессин. Если самцу моногамной полевки ввести этот вазопрессин, он полюбит первую встречную самку навсегда, а вот если блокировать у него рецепторы, реагирующие на вазопрессин, он начнет вести беспорядочную половую жизнь.
Разница в поведении между верными и неверными мышами зависит от варианта гена вазопрессинового рецептора. Поменяв этот ген, можно заставить полигамного самца стать верным мужем. Вот теперь явно настала пора переходить к людям.
Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин с одним из вариантов гена RS3 334 возникновение романтических отношений вдвое реже приводит к браку, чем у прочих. Если они все-таки женятся, у них вдвое больше вероятность оказаться несчастными в браке, а их жены чаще всего оказываются недовольны отношениями в семье. Теперь вы понимаете, почему все девушки должны изучать молекулярную биологию?! Гомосексуализм
Число видов живых существ, у которых зоологи подглядели гомосексуальные контакты, приближается к пяти сотням, причем все они относятся к однополой любви гораздо спокойней нас. Может быть, дело в генах, а не в западной пропаганде?
И таки да, исследования Дж. Бейли и Р. Пилларда показали, что у однояйцовых близнецов сходство по гомосексуальности составляет 50%, а у разнояйцовых — лишь 24%. Для сенсации в прессе оставалось обнаружить «ген гомосексуальности», и вскоре он был найден Дином Хамером: участок Xq28 на верхнем конце длинного плеча Х-хромосомы послужит в вашем генетическом паспорте отметкой о повышенной вероятности тяги к представителям своего пола. Проверьте этот участок, прежде чем выкладывать в Сеть расшифровку своего генома!
Долгое время ученым не давал покоя вопрос, почему гены гомосексуальности не были отсеяны естественным отбором, — ведь любовь любовью, а дети от таких отношений не получаются. Одна из самых популярных теорий утверждает, что гомосексуализм — следствие отбора на бисексуальность. «Феминизированные» бисексуалы могли выжить в мужских сообществах, находя друзей и покровителей в длительных военных походах, да и у женщин пользовались спросом, так как были неагрессивными и заботливыми отцами. Религиозность
Ученые, для которых, как известно, нет ничего святого, предположили, что религиозность тоже может быть связана с генами. И действительно, появились данные, что у однояйцовых близнецов больше сходства в вопросах духовности.
А в 2004 году Дин Хамер (тот самый скандалист, который открыл «ген гомосексуальности») опубликовал книгу «Ген Бога: как вера закреплена в наших генах», в которой связывал со склонностью к религиозности и ее отсутствием разные варианты гена VMAT2. Духовные люди, не говоря уже о лицах, облеченных саном, конечно, пришли в бешенство от столь вредной книги. И были совершенно правы: проверка показала, что вариации VMAT2 объясняют лишь около 1% различий в религиозности, да и качество самого исследования, опубликованного не в научном журнале, а лишь в виде популярной книжки, вызывает сомнения. Зато оно попало на обложку Time. Страсть к приключениям
Ген D4DR с 11-й хромосомы кодирует рецептор дофамина — вещества, связанного с работой центра удовольствия в нашем мозге. Мышь с поврежденным геном дофамина ничего не хочет и в конце концов умирает от голода, но стоит вколоть дозу дофамина ей в мозг, как она становится чрезвычайно любознательной, склонной к риску и безрассудствам. Люди, которым не хватает дофамина, тоже становятся заторможенными и безынициативными, а те, у кого его слишком много, все время ищут новых ощущений.
У гена D4DR есть «короткий» и «длинный» варианты. Люди с длинным вариантом менее чувствительны к дофамину, поэтому, чтобы ощутить внутреннее поощрение, им нужно что-нибудь особенное. Дин Хамер, приложивший руку и к исследованиям D4DR, в свойственной ему манере назвал его «геном приключений». Если в вашей генетической карте указан длинный вариант D4DR, вы, скорее всего, легки на подъем, любознательны и экстравагантны, склонны нарушать правила. Кроме того, обладание этим вариантом гена повышает риск алкоголизма и наркомании.
Впрочем, все не так страшно: по данным Хамера, этот ген лишь на 4% определяет склонность к авантюрам, хотя в целом она зависит от генов на 40%. Просто на нее, как и на другие черты личности, влияют десятки и сотни генов. А кто сказал, что психогенетика — это просто? Политические предпочтения
В свое время Карл Маркс искал основу, базис любых идеологий в экономике. Сейчас модно искать такую основу в мозге, а то — и прямо в генах. Ряд независимых исследований разлученных близнецов показал, что приверженность консервативной или либеральной идеологии в значительной степени носит наследственный характер: не менее трети вариабельности по политическим взглядам объясняется генами. Нередко уже в дошкольном возрасте становится ясно, будет ли человек, когда вырастет, «почвенником» или «реформатором».
Первый претендент на гордое звание «гена либерализма» — это все тот же длинный вариант D4DR, связанный с любовью ко всему новому («ген консерватизма» — короткий вариант D4DR). Но доказать связь вариантов этого гена с политическими предпочтениями долго не удавалось.
Лишь в конце 2010 года вышла статья Дж. Фоулера, в которой он на основании данных многолетнего исследования показал, что эта связь не прямая, а зависит от сочетания двух факторов: варианта гена и количества друзей в юности. Вероятность того, что перед вами вольнодумец, резко повышается, если у человека длинный вариант D4DR, а в школе и институте у него было много друзей.
Объясняют это так: если человек, любящий все новое, в молодости общается с большим числом разных людей, он учится благожелательно относиться к различающимся взглядам на мир и в дальнейшем будет терпимее к нетрадиционным идеям, то есть станет либералом.
Как видим, генетической карты все же недостаточно, чтобы предсказать, как именно «сыграют» многие гены в поведении человека.
Портал «Вечная молодость» http://vechnayamolodost.ru
28.02.2011
Фантазировать о своих возможностях, не зная ограничений – безответственно. Увлекаться психологией, забывая про физиологию и генетику – неверно. Высшее растет через низшее, и азы генетики должен знать любой психолог. Неправда, что новорожденный – это только тельце с набором генов: новорожденный – это уже член общества, это чей-то ребенок, его уже любит его мама и готов воспитывать его отец. Никто пока не знает, есть ли с рождения у ребенка хотя бы зачатки разума, воли и духа, но уверенно можно сказать одно: у ребенка с рождения есть его гены, которые определяют его жизнь и развитие. Генетика человека – это врожденные особенности человека, передаваемые через гены.
Гены – это участки ДНК, несущие информацию о наследственности. Врожденные особенности человека, передаваемые через гены – генетика человека. Генотип – это набор генов организма, фенотип – это внешние проявления этих генов, набор признаков организма. Фенотип – это все то, что можно увидеть, посчитать, измерить, описать, просто глядя на человека (голубые глаза, светлые волосы, низкий рост, темперамент – холерик и так далее).
У мужчин более изменчив генотип, у женщин – фенотип.
По мнению некоторых генетиков, гены передают программы в большей степени не следующему поколению, а через поколение, то есть ваши гены будут не у ваших детей, а у ваших внуков. А у ваших детей – гены ваших родителей.
Что определяют наши гены? Гены определяют наши физические и психические особенности, гены задают, что мы, как люди, не можем летать и дышать под водой, но можем обучаться человеческой речи и письму. Мальчики легче ориентируются в предметном мире, девочки – в мире отношений. Кто-то родился с абсолютным музыкальным слухом, кто-то – с абсолютной памятью, а кто-то с самыми средними способностями.
Способности ребенка зависят и от возраста родителей. Гениальные дети чаще всего рождаются в паре, где матери 27 лет, отцу 38. Однако самые здоровые дети появляются у более молодых родителей, когда матери от 18 до 27. Ваш выбор? Гены определяют многие наши черты характера и склонности. У мальчиков – это склонность заниматься машинками, а не куклами. Гены влияют на наши индивидуальные предрасположенности, в том числе к болезням, к асоциальному поведению, к таланту, к физической или интеллектуальной деятельности и т.д. Можно ли утверждать, что у всех людей с детства есть природная склонность к добру, что человек по природе своей – добр? Это один из центральных вопросов, по которому не утихают споры среди психологов.
При этом важно всегда помнить: склонность подталкивает человека, но не определяет его поведения. За склонность отвечают гены, за поведение – человек. Да и склонностями своими можно работать: какие-то развивать, делать любимыми, а какие-то оставлять вне своего внимания, гасить их, забывать…
Гены определяют время, когда какой-то наш талант или склонность проявится или нет.
Гены определяют время, когда какой-то наш талант может проявиться. Попал в удачное время, когда гены готовы – сделал чудо. Промахнулся по времени – пролетаешь мимо. Сегодня восприимчивость ребенка к развивающим процессам высокая – он «белый лист», «впитывает только хорошее» и «очень талантлив», а спустя год: «ничего не понимает», «что в лоб, что по лбу» и «яблочко от яблони недалеко падает» (с грустью).
Гены определяют, когда у нас просыпается половое влечение, и когда оно засыпает. Гены влияют и на счастье, и на черты характера.
Проанализировав данные по более чем 900 парам близнецов, психологи Эдинбургского университета обнаружили доказательства существования генов, определяющих черты характера, склонность к счастью, способность легче переносить стресс.
Агрессивность и доброжелательность, гениальность и слабоумие, аутизм или экстраверсия – передаются детям от родителей как задатки. Все это изменяемо воспитанием, но в разной степени, поскольку и задатки бывают разной силы. Обучаем ребенок или нет, это также связано с его генетикой. И тут же заметим: здоровые дети вполне обучаемы. Человеческая генетика делает человека исключительно обучаемым существом!
Гены – носители наших возможностей, в том числе возможностей к изменению и совершенствованию. Интересно, что у мужчин и женщин в этом отношении разные возможности. Мужчины чаще, чем женщины, рождаются с теми или иными отклонениями: среди мужчин больше тех, кто будет очень высоким и очень низким, очень умным и наоборот, талантливым и идиотом. Похоже, что на мужчинах природа – экспериментирует… При этом, если уж мужчина таким родился, ему изменить это в течение жизни очень сложно. Мужчина привязан к своему генотипу, его фенотип (внешнее проявление генотипа) – меняется слабо.
Родился длинным – длинным и останешься. Коротышка может с помощью спорта подняться на 1-2 сантиметра, но не более.
У женщин ситуация другая. Женщины рождаются более в среднем одинаковыми, среди них биологических, генетических отклонений меньше. Чаще среднего роста, среднего интеллекта, средней порядочности, идиоток и отстоя среди женщин меньше, чем среди мужчин. Но и выдающихся в интеллектуальном или нравственном отношении – аналогично. Похоже, что эволюция, проводя на мужчинах эксперименты, на женщинах решает не рисковать и вкладывает в женщин все самое надежное. При этом индивидуальная (фенотипическая) изменчивость у женщин выше: если девочка родилась маленькой относительно других, она сумеет вытянуться на 2-5 см (больше, чем может парень)… Женщины имеют большую свободу от своего генотипа, имеют большую возможность, чем мужчины, изменять себя.
Гены дарят нам наши возможности, и гены же наши возможности ограничивают.
Из пшеничного зерна вырастает гордый пшеничный колос, а из саженца яблони – красивая ветвистая яблоня. Нашу суть, наши склонности и возможность реализовать себя дают нам наши гены. С другой стороны, из пшеничного зерна вырастет только колос пшеницы, из саженца яблони вырастает только яблоня, а сколько лягушке ни надуваться, в быка она не раздуется. У нее даже лопнуть от натуги сил не хватит.
Человек – часть природы, и все вышесказанное справедливо и для него. Гены предопределяют границы наших возможностей, в том числе наши возможности менять себя, стремиться к росту и развитию. Если вам с генами повезло, вы сумели воспринять влияния ваших родителей и педагогов, выросли развитым, порядочным и талантливым человеком. Спасибо родителям! Если вам с генами повезло меньше, и вы (вдруг!) родились дауном, то в самом хорошем окружении из вас вырастет только воспитанный даун. В этом смысле наши гены – это наша судьба, и свои гены, свои возможности расти и меняться – мы напрямую изменить не можем.
Много ли в нас генетически заложенного – вопрос очень спорный (взаимодействие наследственности и среды изучает психогенетика). Скорее правда, что чем более человек удаляется от животного мира, тем меньше в нем врожденного и больше приобретенного. Пока нужно признать, что в большинстве из нас врожденного очень много. В среднем, по мнению генетиков, гены определяют поведение человека на 40%.
Если вы любите своего ребенка и учитесь быть хорошим родителем и воспитателем, гарантированы ли вам успехи? Нет. Каким бы талантливым педагогом вы ни были, у вас может родиться «кислый» или трудный ребенок, с которым реально мало что можно сделать. Если вы сделаете лучшее из возможного, то сможете уменьшить неприятности людям от этого ребенка, но успеете ли вы из него вырастить достойного человека за два десятка лет его воспитания? Так получается не всегда. Человек появляется на свет со своим характером, и он бывает очень разным. Некоторые дети рождаются сразу «домашними» — характер легкий, податливый, со взрослыми дружат и их слушают. У других характер самого начала трудный: им тяжело самим, тяжело с ними.
Что это значит? Только то, что стоит приглядываться к тому или той, с кем вы собираетесь создавать семью. Обращать внимание на родственников, учитывая не только то, что с ними придется встречаться, а и то, что тот или иной характер может оказаться и у вашего ребенка. Хороших вам родственников!
Генетика бывает хорошей или плохой, и это зависит в том числе от нашего образа жизни. В благоприятных условиях и хорошем воспитательном процессе, возможная негативная предрасположенность может не реализоваться, или скорректироваться, “прикрыться” влиянием соседних разбуженных генов, а позитивная предрасположенность, иногда скрытая – проявиться. Иногда человек (ребёнок) просто не знает своих возможностей, и категорично “ставить крест”, говорить, что “из этого гадкого утёнка лебедя не вырастет” – опасно.
Другая опасность, другой риск – тратить время и силы на человека, из которого путного все-таки ничего выйти не может. Говорят, что каждый может стать гением, и теоретически это так. Однако практически одному для этого достаточно тридцать лет, а другому нужно лет триста, и вкладываться в таких проблемных людей – нерентабельно. Спортивные тренеры утверждают, что именно врожденный талант, а не методика тренировок, – самый важный фактор формирования будущего чемпиона. То, что человеку дается от природы – база, на которой можно строить все остальное.
Если девушка родилась шатенкой с зелеными глазами и “предрасположенностью” к полноте, то можно, конечно, покрасить волосы и надеть цветные линзы: девушка все равно останется зеленоглазой шатенкой. А вот воплотится ли ее “предрасположенность” в пятьдесятбольшие размеры, носимые всеми ее родственницами, во многом зависит от нее самой. И уж тем более от нее самой зависит, будет ли она к сорока годам, сидя в этом пятьдесятбольшом размере, ругать государство и не сложившуюся жизнь (как это делают все её же родственницы) или найдет себе много других интересных занятий.
Может ли человек менять, когда-то преодолевать, а когда-то улучшить свою генетику? Ответ на этот вопрос не может быть общим, поскольку и это задано индивидуально генетически. В целом правильно говорить, что развитие ребенка определяют склонности плюс воспитание. Однако у одного ребенка с рождения 90% определяется его склонностями и только 10% можно добавить воспитанием (неподатливый ребенок), у другого, податливого – он почти как чистый лист, 10% склонностей и на 90% что вложите воспитанием, то и будет. И то, и другое соотношение – врожденная характеристика ребенка.
Какое соотношение у вас или у вашего ребенка? Понять это можно только опытным путем, начав с ребенком (или с собой) заниматься. Начинайте! Гены задают возможности, от нас зависит, насколько мы эти возможности реализуем. Если у вас хорошая генетика, вы можете сделать ее еще лучшей и передать своим детям как самый дорогой подарок. Наша ДНК запоминает, какое у нас было детство, есть наблюдения, что генетически передаются привычки, навыки, склонности и даже манеры. Если вы выработали у себя воспитанность, красивые манеры, поставили хороший голос, приучили себя к распорядку дня и ответственности, то есть неплохая вероятность, что рано или поздно это войдет в генотип вашей фамилии.
Гены определяют наши задатки, наши возможности и склонности, но не нашу судьбу. Гены определяют стартовую площадку для деятельности – у кого-то она лучше, у кого-то труднее. Но что будет на базе этой площадки сделано – это уже забота не генов, а людей: самого человека и тех, кто с ним рядом.
Думая о генетике, важно помнить, что человек живет и строит себя не в одиночестве. Если полагаться только на собственную генетику, можно остаться дикарем. Нас окружает культура, создававшаяся многими поколениями много сотен лет, вобравшая лучшее из генетики каждого. Нас учат, и мы можем учиться. То, что трудно в себе развить самостоятельно, может помочь развить учитель или тренер: возможно, у него именно к этому генетически заданный потрясающий талант. Люди могут помогать друг другу. Что один не сделает, сделаем вместе!
«Существует ряд наследственных заболеваний, одним из симптомов которых является умственная отсталость: как правило, это нарушения числа или структуры хромосом. Классический пример — синдром Дауна; менее известные — например, синдром Вильямса (синдром „лица эльфа“), синдром Ангельмана и так далее. Но бывают и мутации отдельных генов. Всего генов, в которых мутации могут приводить к умственной отсталости той или иной степени, по последним данным, более тысячи.
Кроме этого, есть ряд нарушений, которые имеют полигенную природу, — их еще называют мультифакториальными. Их появление и развитие обусловлено не только наследственностью, но и влиянием окружающей среды, причем если мы говорим о наследственных факторах, то это всегда результат действия не одного, а множества генов. Сегодня считается, что к таким заболеваниям относятся шизофрения, расстройства аутического спектра, расстройства депрессивного спектра (клиническая депрессия, послеродовая депрессия), биполярное аффективное расстройство (то, что раньше было известно как маниакально-депрессивный психоз), маниакальный синдром и др.
Если не говорить об очевидных хромосомных заболеваниях (скажем, синдром Дауна — трисомия 21-й хромосомы, синдром Вильямса — микроделеция участка хромосомы 7q11.23, и так далее), то существует, например, синдром ломкой Х-хромосомы, при котором происходит мутация конкретного гена в Х-хромосоме, что вызывает помимо всего прочего умственную отсталость. Вообще, с мутациями в Х-хромосоме связано довольно значительное количество таких патологий, и они неплохо изучены.
Относительно влияния наследственных факторов на IQ, насколько мне известно, пока нет точного и однозначного ответа (кроме ситуаций, когда одним из симптомов наследственного заболевания является снижение интеллекта). В целом генетически детерминируется только так называемая „норма реакции“, то есть диапазон вариативности признака, а то, как это реализуется в пределах диапазона, уже связано с условиями среды (воспитанием, тренировками, стрессом, условиями жизни). Считается, что интеллект — это как раз классический пример признака, для которого генетически детерминирован довольно широкий диапазон, а не конкретное значение IQ. Но при этом есть ряд полиморфных аллелей, для которых, например, показана ассоциация с сохранением уровня когнитивных способностей в условиях повышенных физических и психических нагрузок. По разным данным, влияние наследственных факторов на память составляет от 35% до 70%, а на IQ и внимание — от 30% до 85%».
Психогенетика занимается исследованием того, как наследственные факторы влияют на психические качества живого существа. Например, доказано влияние индивидуальных генетических особенностей на темперамент, агрессивность, показатели интроверсии-экстраверсии, поиск новизны, избегание вреда (ущерба), зависимость от вознаграждения (поощрения), IQ, память, внимание, скорость реакции, быстроту дизъюнктивного реагирования (реагирования на ситуации со взаимоисключающим выбором) и другие качества. Но в целом, в отличие от большинства морфологических и биохимических признаков, психические характеристики меньше зависят от генетики. Чем сложнее поведенческая деятельность человека, тем больше роль окружающей среды и меньше — генома. То есть для простых двигательных навыков наследуемость выше, чем для сложных; для показателей интеллекта — выше, чем для свойств личности, и тому подобное. В среднем (разброс данных, к сожалению, довольно большой: это связано с различиями методик, объемов выборок, недостаточным учетом популяционных особенностей) наследуемость психических характеристик редко превышает 50–70%. Для сравнения: вклад генетики в тип конституции достигает 98%.
Почему так? В частности, потому что в формировании этих признаков (сложных и комплексных) участвует огромное количество генов, а чем больше генов вовлечено в какой-либо процесс, тем ниже вклад каждого в отдельности. Например, если у нас есть десять разновидностей рецепторов, восприимчивых к одному нейромедиатору, и каждый кодируется отдельным геном, то снижение экспрессии или даже нокаут по одному из генов не выключат всю систему в целом. Иконки: 1) A.L. Hu, 2) Aenne Brielmann, 3) Michael Thompson, 4) Alex Auda Samora — from the Noun Project.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию
Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов
Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов. egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами. Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914. См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005.
Александр Марков
Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.
egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Гены, мозг и социальное поведение связаны сложными отношениями. Эти отношения действуют на трех временных масштабах: (i) на уровне физиологии — влияя на активность мозга (сплошные линии), (ii) на уровне развития организма — через экспрессию генов в мозге и эпигенетические модификации (линия из точек), (iii) на эволюционном уровне — через естественный отбор (пунктирная линия). Направление влияния: розовые стрелки — от социальных отношений к изменению функций мозга и поведения, стрелки цвета морской волны — от генов к социальному поведению. Изображенные животные (сверху по часовой стрелке): зебровая амадина (T. guttata), цихлида (A. burtoni), медоносная пчела (A. mellifera), дрозофила (D. melanogaster), прерийная полёвка (M. ochrogaster), крыса (R. norvegicus), огненный муравей (S. invicta). Курсивом на фотографиях даны названия генов, связанных с тем или иным видом социального взаимодействия. Изображение из обсуждаемой статьи Robinson et al.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило. Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином.
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов.
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Список литературы
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–
РЕФЕРАТ
на тему: Гены их роль и значение для жизни
Содержание
Введение
Глава 1. Генетика и эволюция
Глава 2. Роль генов в определении и лечении различных заболеваний
.1 Гены и психические заболевания
.2 Психические расстройства в онтогенезе
Глава 3.Генетика и практика
.1 Пренатальная диагностики наследственных заболеваний
Заключение
Список литературы
Введение
«Как бы далеко ни продвинулся человек
по дороге знания, как бы высоко ни парил
его разум, никогда, я думаю, он не перестанет
удивляться великому таинству наследственности:
возникновению сложной индивидуальности,
именуемой организмом, из одной-единственной
оплодотворенной клетки, несущей эстафету жизни…»
Беляев Д.К.
Ген – это наследственный фактор, функционально неделимая единица генетического материала; участок молекулы ДНК (у некоторых вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или ри-босомальной РНК или взаимодействующий с регуляторным белком. Совокупность генов данной клетки или организма составляет его генотип. Еще в 1865 году Г.Менделем было постулировано существование дискретных наследств, факторов в половых клетках, а в 1909 B. Иогансен назвал их геном. В дальнейшем Т. X. Морган и его школа разработали теорию генов. [1].
Первые попытки экспериментального решения проблем, связанных с передачей признаков из поколения в поколение, предпринимались уже вXVIII веке. Учёные, скрещивая между собой, различные особи и получая помесное потомство, стремились узнать, как наследуются родительские свойства.
В1665г. английским естествоиспытателем Робертом Гуком впервые была обнаружена клетка. А уже в1674г. Левенгук, благодаря созданию микроскопа, открыл существование живых клеток.
год считается датой рождения генетики. С этого момента начинаются широкие исследования, в ходе которых были сформулированы представления о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов наследственной изменчивости и другие. Новый этап развития генетики связан с усовершенствованием техники научных исследований. Сложные современные приборы позволили установить строение нуклеиновых кислот, вскрыть их значение в явлениях наследственности и расшифровать генетический код, выявить этапы биосинтеза белка. Актуальность данной темы обусловлена тем, что без учета достижений генетики в настоящее время немыслима полноценная деятельность человека во многих сферах науки и производства: в биологии, медицине, сельском хозяйстве. Знание генетики помогает понять возникновение и развитие жизни на Земле, открывает материальную основу эволюционных преобразований. Обнаружение связей между строением генов и белков привело к созданию молекулярной генетики. Интенсивно развивается иммуногенетика, изучающая генетические основы иммунных реакций организма. Выявлена генетическая основа многих заболеваний человека или предрасположенности к ним. Такие сведения помогают специалистам в области медицинской генетики установить точную причину заболевания и разработать меры профилактики и лечения людей. [6].
В данной работе мы рассмотрим насколько значима роль гена в жизни, на примере нескольких видов заболеваний, а именно затронем психические заболевания, и как возможности решения, приведем выработанную на основе генетики и уже ставшую «самостоятельной» пренатальную диагностику наследственных заболеваний плода.
Глава 1. Генетика и эволюция
Современная генетика рассматривает наследственность как коренное, неотделимое от понятия жизни свойство всех организмов повторять в ряду последовательных поколений сходные типы биосинтеза и обмена веществ в целом. Это обеспечивает структурную и функциональную преемственность живых существ – от их внутриклеточного аппарата до морфо-физиологической организации на всех стадиях индивидуального развития. Наследственная изменчивость, то есть постоянно возникающие изменения генотипической основы организмов, и наследственность поставляют материал, на основе которого естественный отбор создаёт многообразие форм жизни и обеспечивает поступательный ход эволюции. Одно из коренных положений современной генетики состоит в том, что наследственная информация о развитии и свойствах организмов содержится главным образом в молекулярных структурах хромосом, заключённых в ядрах всех клеток организма и передаваемых от родителей потомкам. Биохимические процессы, лежащие в основе индивидуального развития организма, осуществляются на базе, поступающей из ядра информации в цитоплазматических структурах клетки. Некоторые клеточные органеллы, в частности хлоропласты и митохондрии, обладают генетической автономией, то есть содержат наследственный материал.
Открытие Менделем закономерностей расщепления показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии. Это устранило одно из самых серьёзных возражений против дарвиновской теории эволюции, высказанное английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникнуть у какой-либо особи, в последующих поколениях будет уменьшаться и постепенно приближаться к нулю. [1].
Генетика обосновала положение, что генотип определяет норму реакции организма на среду. В пределах этой нормы условия среды могут влиять на индивидуальное развитие организмов, меняя их морфологические и физиологические свойства, то есть, вызывая модификации. Однако эти условия не вызывают адекватных (то есть соответствующих среде) изменений генотипа, и поэтому модификации не наследуются, хотя сама возможность их возникновения под влиянием условий среды определена генотипом. Именно в этом смысле генетика отрицательно решила вопрос о наследовании признаков, приобретённых в течение индивидуального развития, что имело огромное значение как для утверждения дарвиновской теории эволюции, так и для селекции.
Генетические исследования показали также роль мутационного процесса, изоляции миграций, гибридизации, а также генетико-автоматических процессов в эволюционной дивергенции популяций и механизмах видообразования.
Доказано, что один ген может влиять не на один, а на многие признаки организма (плейотропия), вместе с тем развитие каждого признака зависит не от одного, а от многих генов (полимерия). Доказано также, что функции гена и его влияние на фенотип зависят от физического положения гена в генетической системе (эффект положения), от совокупности остальных генов (генотипической среды) и от внешних условий. Фенотипическое выражение гена – экспрессивность, так же как и его проявление – пенетрантность то есть наличие или отсутствие контролируемого данным геном признака, могут варьировать в зависимости как от внешних условий, так и от генотипа. Под влиянием различных внешних воздействий гены могут изменяться – мутировать. К независимому мутированию способны также элементарные единицы, входящие в состав гена. Все эти факты свидетельствуют о сложности материальной структуры гена, эволюционировавшей в процессе развития жизни на Земле, после того как были вскрыты молекулярные основы организации наследственных структур и процессов, которые лежат в основе передачи наследственной информации в клетке (и в организме) и в поколениях клеток (и организмов), выяснилось, что гены контролируют процессы синтеза белков в клетках и что генные мутации (изменения химической структуры генов) ведут к изменению химической структуры белков (что в ряде случаев сводится к замене одной аминокислоты другой). Материальным носителем генетической информации служит гигантский полимер – дезоксирибонуклеиновая кислота (ДНК), входящая в качестве важнейшего компонента в структуру хромосом всех организмов, за исключением некоторых вирусов, содержащих puбонуклеuновую кислоту (РНК). [6].
Для каждой стадии развития организма характерна строго определённая картина синтетической активности хромосом: некоторые участки их находятся в состоянии сильной активности и синтезируют РНК, тогда как другие участки на этих стадиях развития функционально не активны, но становятся активными на других стадиях. Оказалось, что в ряде случаев регуляторами функциональной активности генетического аппарата являются гормоны. Проблема генетических аспектов онтогенеза – одна из наиболее актуальных в современной биологии.
Глава 2. Роль генов в определении и лечении различных заболеваний
Все большее внимание привлекает и проблема разнообразия генома человека, то есть генетического полиморфизма. Задачи его носят преимущественно прикладной характер и касаются выяснения генетических (генных) основ индивидуальной чувствительности или устойчивости человека к различным неблагоприятным экзогенным факторам (экогенетика), а также к лекарственным препаратам (фармакогенетика). В ходе таких исследований и возникло представление о существовании ” генов предрасположенности”. Приведем высказывание Ф.Коллинса, директора Международной программы “Геном человека”: “Каждый из нас генетически несовершенен. По мере разработки все новых и новых генетических тестов у каждого человека можно обнаружить мутацию, предрасполагающую к тому или иному заболеванию”. Таким образом, “гены предрасположенности” – это по сути мутантные аллели, которые совместимы с рождением и жизнью в постнатальном периоде, но при определенных неблагоприятных условиях могут способствовать развитию того или иного заболевания. В зависимости от природы провоцирующего фактора их относят к ” генам внешней среды” либо к генам-триггерам, запускающим патологический процесс при сочетании каких-то неблагоприятных факторов. В отличие от моногенных болезней, для возникновения которых достаточно наличие мутаций в структурном гене, эти заболевания принадлежат к наиболее многочисленной группе мультифакториальных болезней, в появлении которых повинны как генетические, так и экзогенные факторы. [4].
В настоящее время известно уже более 200 “генов внешней среды”. Они выявлены в каждой группе ферментов, участвующих в детоксикации, у них обнаружены мутантные изоформы, функция которых может быть нарушена по сравнению с нормальными аллелями. Для многих из них выявлены генетические полиморфизмы, влияющие на функциональную активность их аллелей. Генетические исследования таких генов говорят о значительных межпопуляционных и межэтнических различиях их аллельного полиморфизма, что отражает своеобразие условий проживания, питания и образа жизни населения в различных регионах мира. В дальнейшем выяснилось, что эти функционально неполноценные аллели значительно чаще встречаются у лиц с различными заболеваниями, в этиологии которых важную роль играют неблагоприятные экзогенные факторы. Гены, имеющие такие аллели, и можно рассматривать как “гены предрасположенности” к тем или иным заболеваниям. Так, установлено, что неполноценный (нулевой) аллель глутатион-S-трансферазы, имеющий протяженную делецию, представлен в гомозиготном состоянии почти у 40% населения России. Этот генотип особенно характерен для больных раком легких, хроническим обструктивным бронхитом и раком мочевого пузыря. У лиц с таким генотипом на фоне алкоголизма чаще развивается цирроз печени . Имеются многочисленные сведения о высокой предрасположенности индивидов, гомозиготных по “ослабленному” аллелю гена GSTPi, к различным опухолям, в том числе к раку кожи и, как недавно установлено, даже к болезни Паркинсона. Это тяжелое нейродегенеративное заболевание, обусловленное избирательной гибелью допаминэргических нейронов в подкорковых отделах мозга, особенно часто наблюдается у людей после хронического воздействия пестицидов. В настоящее время уже имеются достаточно обоснованные данные о том, что по крайней мере некоторые “гены внешней среды” непосредственно участвуют в возникновении ряда онкологических ( рак молочной железы , рак легких , рак мочевого пузыря и др.) и неонкологических ( хронический обструктивный бронхит, эмфизема легких, эндометриоз, болезнь Паркинсона ) заболеваний. Не случайно поэтому популяционный скрининг аллельных вариантов генов GSTM1 и NAT-2 уже сегодня стал предметом широкого обсуждения.
Генотипирование по AРОЕ может сыграть роль в расшифровке нейробиологических механизмов болезни Альцгеймера, а также использоваться как критерий формирования групп больных для клинических исследований. Вместе с тем, пока еще нет достаточных оснований рекомендовать этот метод для практической медицины. Во-первых, не проведены эпидемиологические исследования в отдельных возрастных группах. Если генотип AРОЕ4/4 обнаружен у 25-летнего больного с деменцией, вероятность у него болезни Альцгеймера все равно крайне мала. Во-вторых, болезнью Альцгеймера может страдать человек с любым генотипом AРОЕ, то есть в каждом отдельном случае данные генотипирования не могут ни подтвердить, ни опровергнуть этот диагноз. Даже если генотип свидетельствует о высокой вероятности болезни Альцгеимера, это не исключает наличия другой формы деменции, поддающейся лечению. [5].
Поскольку основная задача дифференциальной диагностики – выявление излечимых форм деменции, а генотипирование по AРОЕ не решает этой задачи, то считают, что нет смысла его широкого использования. Однако со временем результаты генотипирования наряду с другими показателями, например содержанием бета-амилоидного белка или тау-белка в СМЖ, могут составить достаточно чувствительней и специфичный диагностический комплекс.
Обсуждается также прогностическое использование генотипирования по АРОЕ в бессимптомных случаях.
Поскольку профилактики болезни Альцгеимера не существует, многие врачи считают такое тестирование неэтичным. Более того, генотипирование не позволяет прогнозировать такой важный признак, как возраст начала болезни. Лица с генотипом AРОЕ4/Е4 составляют 2% всего населения, причем болезнь обычно начинается в возрасте 50 лет и старше.
.1 Гены и психические заболевания
Поведенческая генетика, также психогенетика изучает влияния генетических свойств организма на поведение, а также взаимодействия генетических и средовых факторов в той мере, в какой они воздействуют на поведение человека, то есть исследование широкоизвестного противоречия: что более влияет – природа или воспитание. Исследование взаимосвязей поведения и генетических предпосылок, или наследственности.
Разновидностью отклоняющегося поведения, являются психические заболевания. Исследования, выполненные разными методами, показали, что наследственная предрасположенность к психическим болезням может быть различной: контролироваться одним локусом (быть моногенной), небольшим числом локусов (олигогенный котроль) или множеством локусов (полигенный контроль). В последнем случае наследственная основа представляется множеством локусов с аддитивным (суммирующем) эффектом аллелей. Каждый из этих генов в отдельности может не проявлять самостоятельного патологического действия, но при их накоплении в определенной комбинации в генотипах они приводят к развитию болезни.
Существует модель «главного гена», согласно которой развитие болезни определяется действием гена с сильным эффектом, а ее выраженность – множеством генов со слабым эффектом (генов-модификаторов, или полигенов) В настоящее время психические болезни относятся к мультифакториальным, или болезням с наследственным предрасположениями.
Для мультифакториальных характерен широкий клинический полиморфизм – разнообразие в проявлении заболевания у разных лиц. Одно и то же заболевание может быть вызвано различными генетическими причинами.
Это явление носит название генетическая гетерогенность.
Для мультифакториальных болезней характерно семейное накопление – частота болезни у родственников выше, чем в среднем в популяции. В родословных с психическими болезнями повышена частота индивидов с пограничными психическими состояниями и другими отклонениями в поведении. [4].
Для того чтобы выяснить, какие гены участвуют в формировании мультифакториальных (в том числе и психических) заболеваний, используют биохимические, молекулярно-генетические и методы и данные генеалогического анализа. Они позволяют определить, какие гены формируют подверженность заболеванию, какие биохимические реакции протекают под их контролем, как биохимические продукты оказывают влияние на функции организма, как это проявляется в поведении. Это методология построена на концепции «кандидатных генов». Кандидатными называют гены, которые контролируют ферменты, участвующие в формировании структур организма, нарушение которых приводит к заболеванию. Используются также подход, получивший название «геномный поиск». В этом случае сравнивают наличие вариантов ДНК в группе больных и группе здоровых людей.
Одним из средовых факторов риска развития психических нервных болезней являются вирусы. При исследовании спинномозговой жидкости психиатрических и неврологических пациентов на содержание вирусных антител и интерферона были обнаружены коплемент-зависимые нейтрализующие антитела к вирусу герпеса (HSV1) у52% пациентов со старческим слабоумием (52%), 51% больных энцефалитом, 44% больных алкоголизмом, у 37% пациентов с повреждениями периферических нервов, при множественном склерозе (42%), шизофрении (32%), менингите (35%). Интерферон в спинномозговой жидкости был найден у 40% психиатрических и 35% неврологических болезней. [5].
Гипотеза о происхождении психических болезней.
Для объяснения высокой частоты психических болезней в популяциях была выдвинута эволюционно-генетическая гипотеза. Согласно этой гипотезе психические болезни представляют собой животное наследие человека, а их высокая распространенность объясняется тем, что гены, их формирующие, в невысоких дозах, по-видимому, полезны и благодаря этому сохраняются в популяции.
Если по каким-то причинам резко снижается порог реагирования, то реакции могут возникать не только в ответ на специфические раздражители, но и на нейтральные. В таких случаях они становятся неадекватными ситуации и приводят к аномалиям поведения.
Психические болезни человека эволюционно произошли от защитных реакций животных: эпилепсия от эпилептиформной реакции, аффективные психозы от аффективной реакции, шизофрения от кататонической реакции. Из-за того, что у человека резко снизился порог реагирования, эти реакции утратили свою адаптивную роль и стали патогенными.
Психоз рассматривают как плату за сохранение в популяции определенных генов, которые в других комбинациях дают их носителям какие-то биологические преимущества. Например, получена информация о том, что у больных шизофренией женщин высок процент музыкально и художественно одаренных детей.
Известно, немало примеров того, что индивиды, одаренные специальными творческими способностями, не только сами имеют психические отклонения, но также и повышенный процент родственников с психическими аномалиями.
Генетическая природа таких тяжелых психических заболеваний, как шизофрения, биполярный психоз, аутизм, уже не вызывает сомнений ни у психиатров, ни у самих исследователей, работающих в области биологической психиатрии. За последние годы ученые собрали большой и убедительный материал на базе исследования семей, в которых неоднократно встречаются случаи заболевания. Были исследованы пары монозиготных (однояйцовых) и дизиготных (двуяйцовых) близнецов. Работы специалистов показали, что вклад генетических факторов в развитие заболевания достаточно высок (60-80%) и явно превышает вклад средовых факторов. Частота возникновения аутизма и заболеваний аутистического спектра в популяции составляет 0,3-0,6%, а уровень заболеваемости у братьев и сестер больных детей значительно выше (2-8%). Приведу еще цифры: конкордантность развития заболевания у близнецов составляет в случае заболеваний аутистического спектра (синдром Аспергера, дезинтегративные расстройства, синдром Ретта) 90% у монозиготных близнецов и 0-10% у дизиготных пар. Риск заболевания биполярным расстройством в популяции равен 0,3-1,5%, а среди родственников больных он гораздо выше -более 20%. Шизофрения может возникнуть в 0,6-2% случаев у людей, не имеющих наследственной отягощенности по психическим заболеваниям. У родственников первой степени родства величина такого риска возрастает уже до 9-13%. Самый высокий риск шизофрении мы отмечаем у индивида из близнецовой пары, в которой один из близнецов уже имеет это заболевание (28-48% по разным данным), и у ребенка, родившегося от двух пораженных родителей (36-46%). [5].
.2 Психические расстройства в онтогенезе
Некоторые психические расстройства начинаются в детстве, другие развиваются в первые годы жизни. К расстройствам онтогенеза относят умственную отсталость, когда IQ ребенка не превышает 70 баллов. Известно много выдающихся людей, которые в детстве страдали расстройствами онтогенеза, в частности, в обучении, например, А. Эйнштейн, В. Вильсон, Н. Рокфеллер, В. Черчилль, Дж. Кеннеди.
Рассмотрим некоторые расстройства онтогенетического развития:
Аутизм. Для аутизма характерно отсутствие осознанности о существовании и чувствах окружающих людей. У людей с данным заболеванием нарушено вербальное и невербальное общение, отсутствует воображение. Речь людей с аутизмом лишена смысла, часто идет повторение слов и предложений. Больные дети не отзываются на свое имя, не любят, когда их ласкают и обнимают, не выражают никаких эмоций на лице и не контактирует глазами, плохо спят, у них развивается чувство страха. Около 66 – 75% людей с аутизмом имеют IQ до 70 баллов.
Аутизм распространен в популяции с частотой 2 -5 на 10000 тысяч человек, причем среди мужчин он встречается в 3 – 4 раза чаще, чем среди мужчин. Различия касаются и возрастных групп: среди детей 7 – 9 лет аутизм встречается с частотой 12,6 на 10000 человек, среди взрослых 18 – 20 лет – с частотой 0,4 на 10000, что, по-видимому, объясняется различными диагностическими критериями и улучшением состояния у взрослых. В настоящее время в мире идет тенденция к росту заболеваемости аутизмом.
Заикание. Заикание характеризуется остановками речевого потока, которые выражаются в повторении звуков, слогов и слов.
Степень заикания постоянно варьирует – в спокойном состоянии человек говорит лучше, чем в тревожном. Заикание встречается у 1% взрослых. У детей в возрасте до 5 лет частота заикания 5%, у школьников – с частотой 1,2%.
Поиск генетических причин заикания проводился с помощью генеалогического и близнецового методов. Анализ родословных показал, что некоторых семьях заикание наблюдается в нескольких поколениях, у мальчиков в 4 раза чаще, чем у девочек.
Генетическая подверженность заиканию представляет собой полигенную систему с пороговым эффектом, неодинаковым у представителей разного пола.
Синдром Туретта. В 1885 году французский невропатолог Жиль де ля Туретт впервые диагностировал женщину с заболеванием, впоследствии получившим название синдром Туретта. Синдром Туретта проявляется обычно до 18-летнего возраста и характеризуется непроизвольными, быстрыми, повторяющимися, неритмическими и стереотипными множественными двигательными и вокальными тиками. Двигательные тики обычно затрагивают область головы других частей тела (туловище, верхние и нижние конечности).
Популяционная частота синдрома Туретта составляет 5 больных на 10000 человек, однако для разных популяций данные варьируют. Риск заболеть Синдромом Туретта для родственников первой степени родства больного по разным данным составляет примерно от 2% до 51%, причем более подверженными, как уже было отмечено, является мужской пол, для представителей которого риск в 5 раз выше, чем для женщин. [2].
Дислексия. Дислексия определяется как специфическое и значительное ухудшение способности к чтению, которую нельзя объяснить снижением интеллекта, возможностей овладеть чтением, мотивацией или сенсорными повреждениями. Дислексия является одной из наиболее частых аномалий, диагностируемых в детстве, и представляет огромную образовательную и социальную проблему. Несмотря на то что дислексия считается аномалией, дислексики часто имеют повышенные показатели умственного развития. Среди детей, страдающих дислексией, мальчики составляют около 80%.
Синдром дефицита внимания и гиперактивности. Гиперкинетический синдром проявляется в повышенной склонности отвлекаться. Гиперактивные дети не могут усидеть на одном месте и сконцентрироваться на каком-либо занятии. Они легко переключаются с одного дела на другое, ничего не довдя до конца.
Гиперкинетический сидром встречается у 3 – 9% детей, причем среди мальчиков значительно чаще, чем среди девочек. Гиперкинетические дети часто происходят из семей с какими-либо психическими нарушениями. Примерно у 40% из них один или оба родителя страдают психическим расстройством. ген психический болезнь аутизм
Во все времена поднимался философский вопрос о свободе воли человека. Кто-то из мыслителей считал, что люди принимают решения самостоятельно; другие утверждали, что всё в мире предопределено, а воля человека — это иллюзия. Современные исследования мозга человека и его поведения вернули старому спору актуальность Мозг, клетка, ген Иногда мы становимся заложниками своего мозга, о чём нам часто напоминают нейробиологи: например, пациент с обсессивно-компульсивным расстройством (ОКР) страдает от непроходящей тяги к мытью рук из-за повышенной активности хвостатого ядра. Этот отдел мозга запускает сигналы в орбитофронтальную кору и заставляет человека совершать бессмысленные, на первый взгляд, действия. Эти действия не имеют смысла только для внешнего наблюдателя; пациенту с ОКР они необходимы, чтобы справиться с тревогой, которая изводит его. Сейчас ОКР успешно лечится антидепрессантами, в частности, кломипрамином.
Психологи, исследующие когнитивные ошибки и влияние внешних факторов на выбор человека, подливают масла в огонь. Оказывается, музыка, звучащая в супермаркете, влияет на то, какое вино мы купим. Сталкиваясь с такими особенностями нашего мозга, мы можем задать себе вопрос: а является ли человек хозяином себе? Что такое наша жизнь, если не результат игры в кости, которой забавляются разные отделы мозга? Получается, что от деятельности одной или нескольких клеток может зависеть принятие важных для нашей жизни решений. Возможно, вопрос стоит переформулировать, ведь структура и активность клеток человеческого мозга зависят от маленьких, но очень важных составляющих — генов, участвующих в формировании и функционировании мозга.
Как известно, гены представляют собой последовательность нуклеотидов — дезоксирибонуклеиновую кислоту (ДНК). ДНК кодирует длинную нить белка исходя из правила три нуклеотида — одна аминокислота.
Замена одного нуклеотида другим называется однонуклеотидным полиморфизмом (Single Nucleotide Polymorphism, SNP, снип) и может привести к изменению белковой последовательности. Например, если в кодоне треонина изменить первый нуклеотид, то вместо него в белковую молекулу встанет аланин. Как следствие, изменится функция белка: если замененная аминокислота находилась в активном центре фермента, то он перестанет выполнять свою функцию. Это может привести к гибели клетки и всего организма. А что произойдёт, если меняется не фермент, а рецептор к нейромедиатору в головном мозге? В этом случае замена одного нуклеотида может привести к разнице в реакции между нейромедиатором и рецептором. Этого так легко не увидеть, но мы заметим, как это повлияет на личность и отразится на поведении человека.
Рецепторы зависимости
Одним из главных медиаторов в центральной нервной системе является дофамин. Дофаминовые пути регулируют работу мышц (снижают тонус и способствуют двигательной активности), входя в экстрапирамидные пути. При нарушенной работе дофамина в центральной нервной системе развивается болезнь Паркинсона.
Нервные структуры, «работающие» на дофамине, отвечают за формирование желаний, целенаправленную деятельность и эмоциональное восприятие, т.е. формируют поведение и личность человека. Одна из теорий возникновения шизофрении называется дофаминовой и напрямую связывает нарушение метаболизма этого вещества в нервной системе с симптомами заболевания. При шизофрении пациенты часто бывают пассивными и проявляют мало эмоций, что может быть вызвано дефицитом дофамина в некоторых отделах мозга. Сами рецепторы к дофамину* делятся на пять типов: от D1 до D5. Кодирующие их гены называются соответственно — DRD1, DRD2 и так далее. Исследователи объединяют рецепторы 1-гои 5-го типа в одну группу, а прочие рецепторы — в другую. Это связано с тем, что при активации рецепторов первой группы в клетке повышается концентрация циклического аденозинмонофосфата (цАМФ), который передаёт сигнал с поверхности клетки и активирует ферментные системы.
При взаимодействии рецепторов второй группы с дофамином концентрация цАМФ снижается с соответствующими последствиями. Рецепторы 1-го и 2-го типа являются наиболее распространенными в нервной системе, и их полиморфизм может влиять на наше поведение за счёт их многочисленности.
Достаточно шансов повлиять на поведение человека имеют рецепторы к дофамину 3-го и 4-го типов. У них это может получиться не из-за количества, а из-за специфичности расположения. Эти рецепторы находятся на нейронах, расположенных в системе вознаграждения, миндалине, гиппокампе и коре — в тех отделах, которые напрямую влияют на наше поведение. (Схематично система вознаграждения показана на рис. 1.)
* — За исследование этих рецепторов, относящихся к классу G-белоксопряженных, в 2012 году вручена Нобелевская премия по химии: «Нобелевская премия по химии (2012): за рецепторы наших первого, третьего и четвертого чувств» — Ред.
По мере накопления знаний о том, как работает геном, многие представления о человеке, действительно, должны быть пересмотрены. Легко преувеличить значение генетической основы поведения в нашей жизни. Гены не могут определять поведение непосредственно. Поведение связано с деятельностью мозга, и самое большое, на что способны гены – повлиять на строение мозга, его размер, на чувствительность к гормонам и сигнальным молекулам.
Среди сложных поведенческих схем, обусловленных генами, есть те, которые предусматривают возможность различных вариантов действий. Эти схемы мы называем “свободой воли или свободой выбора. Именно наличие свободы выбора вместе со знаниями о возможных последствиях определяет то, что называется “ответственностью человека”. Так что, существование генов, способных влиять на поведение, не отменяет ответственности ни в правовом смысле, ни в повседневной жизни.
Не стоит рассчитывать, что для каждого вида поведения будет найден конкретный ген. При формировании поведенческой реакции человека играет роль совокупность генов и их взаимодействие. Ну, и конечно, очень важна оценка разнообразных внешних влияний, как биологических, так и социальных, психологических.
Генетики при изучении поведения обнаружили парадокс. Во многих исследованиях определялась высокая степень схожести между родными и усыновленными братьями и сестрами. Результат является настолько надежным, что в сфере генетики поведения можно сформулировать первый закон – все поведенческие черты частично наследственны.
LOGO
Гены и поведение
Плешкунов Александр,
10 класс,
МОУ лицей № 7 г.Томска
LOGO
Содержание
1
Актуальность и проблема исследования
2
Гипотеза
3
Цели и задачи
4
Результаты, их значимость http://www.themegallery.com
LOGO
Взаимосвязь генов и поведения
Существует связь: гены >
поведение, т.е. гены
влияют на поведение. Но
есть и обратная связь:
поведение > гены, т.е.
поведение влияет на гены.
Необходимо помнить:
каждый поведенческий
признак определяется не
одним – двумя, а огромным
множеством генов,
работающих согласованно. http://www.themegallery.com
LOGO
От чего зависит поведение человека?
ПОВЕДЕНИЕ
Генотип
Социальная
и природная
среда http://www.themegallery.com
LOGO
Эффект Болдуина
Изменившееся поведение может вести к
изменению факторов отбора и,
соответственно, к новому направлению
эволюционного развития. Данное явление
известно как «эффект Болдуина» — по имени
американского психолога Джеймса Болдуина,
который впервые выдвинул эту гипотезу
в 1896 году.
Пример: наследственная способность
усваивать молоко в зрелом возрасте.
«Эффект Болдуина» можно рассматривать
как связь: поведение > гены. http://www.themegallery.com
LOGO
Методы изучения влияния
генов на поведение
Решение проблемы
Единство методов
Молекулярный
Родословный
Близнецовый
На приемных
детях http://www.themegallery.com
LOGO
Методы изучения влияния
генов на поведение
Английский биолог Фрэнсис
Гальтон использовал
близнецовый и родословный
методы в своих
исследованиях.
Работы на эту тему:
«Наследственный талант и
характер» и «История
близнецов как критерий
относительной силы
природы и воспитания»
опубликованы в 1865 году http://www.themegallery.com
LOGO
Есть ли гены доброты и
агрессии?
На этот вопрос удалось
ответить голландскому
генетику Гансу
Бруннеру. Он
исследовал семью, в
трех поколениях которой
14 мужчин – проявляли
нарушения поведения,
импульсивную
агрессивность и
умственную отсталость. http://www.themegallery.com
LOGO
Гены счастья и тревоги
Американский генетик Кен
Кендлер определил, что
тревожность и депрессия на
33–46% определяются
наследственностью. Но когда
пересчитали результаты,
объединив оба признака
вместе, получили более
высокие цифры.
Следовательно, существует
ген, который проявляется
либо как тревожность, либо
как депрессивность. http://www.themegallery.com
LOGO
Гены асоциального поведения
Доктор Стивен Суоми из Национального
института детского здоровья и эволюции
человека изучал взаимосвязь агрессивного
поведения, генов и воспитания на обезьянах
резус.
Исследования доказали, что
наследственность и воспитание влияют на
поведение. http://www.themegallery.com
LOGO
Датское исследование: доля сыновей, имевших судимости, в
семьях, различающихся по наличию судимости у биологического
и приёмного отца.
судимость обоих отцов
20,5
судимость приёмного отца
12,6
судимость биологического отца
14
нет судимости у родителей
9,5
5
10
15
20
25
% осуждённых сыновей http://www.themegallery.com
LOGO
Причины, приводящие к асоциальному поведению. http://www.themegallery.com
LOGO
Выводы
•Научные исследования доказали, что гены влияют на
поведение и поведение влияет на генотип («эффект
Болдуина»).
•Влияние генов на поведение изучается разными методами.
•Поведение – слишком сложная система, чтобы считать, что
какая-либо его форма определяется одним конкретным
геном.
•Формы поведения зависят от большого числа генов и
гораздо больше подвержены влиянию внешней среды, чем
биохимические и морфологические признаки.
•Однако, как и в какой мере гены влияют на поведение
человека, остается еще неразрешённой проблемой.
•Взаимодействие генов и среды иногда сравнивают с игрой в
карты – хороший игрок может выиграть и с плохими картами. http://www.themegallery.com
LOGO
Существует ещё одно негласное разделение людей: на «сов» и «жаворонков» (промежуточный вариант получил определение «голуби»). По сути, это разделение людей на хронотипы (характеры суточной активности). Недавние исследования показали, что на хронотип влияют изменения на участке гена PER1, который отвечает за поддержание цикла «бодрствование-сон».
У «жаворонков» тип гена PER1 определяет более раннюю физическую и умственную активность, что позволяет им раньше других пробуждаться и включаться в работу. Другие варианты этого гена определяют режим активности, который свойственен «голубям» и «совам».
Любовь к чтению
Учителя знают, что одни дети читают «запоем», а других заставить взять книгу в руки можно только из-под палки. Не спешите винить своих отпрысков! Даже многим взрослым людям чтение даётся с большим трудом: вместо одних букв они видят другие, а это влияет не только на понимание слов, но и на правописание.
Главный ген, отвечающий за любовь к чтению (проще говоря — за способность легко воспринимать написанное), — DYX1C1. Если в процессе внутриутробного развития в этом гене возникают мутации, участок коры головного мозга формируется не так, как у большинства людей, и это мешает получать удовольствие от чтения.
Есть семьи, в которых читать не любит никто! И это неудивительно. В 50% случаев способность к восприятию книг передаётся по наследству: вернее, передаётся по наследству извилина височной доли левого полушария (этот участок отвечает за способность собирать буквы в слова). О таких людях как раз и говорят: «смотрю в книгу, вижу фигу».
Генетика лежит в основе возникновения многих заболеваний. Доказано, что генетическая предрасположенность отвечает за возникновение рака, диабета, гипертонии, аллергии. И этот список постоянно растёт. Недавно наследственный след был обнаружен и в возникновении мигрени. В случае если мать страдает мигренью, вероятность того, что с этим заболеванием столкнётся её ребёнок, — 60%. Если мигрень у обоих родителей, вероятность развития заболевания у ребёнка составляет 80-90%.
Смотрите также:
Люди с генетическими различиями любят друг друга сильнее >
Красивые люди эгоистичны по своей природе – ученые >
Форма головы определит судьбу женщины – ученые >
Вопрос о том, каждый ли из нас может стать гением, имеем ли мы возможность безграничного развития или всего лишь загнаны в рамки собственной наследственности, давно интересует не только ученую общественность, но и простого обывателя. Некоторые утверждают, что гены это некий эфемерный объект, подобно фатуму, и сваливать на него человеческие поражения и победы — верх инфантильности. Другие считают гены основой для формирования личности. Что же на сегодняшний день известно о генах и их влиянии на поведение человека?
Достаточно давно было выявлено, что некоторые болезни обусловлены генетикой, так например, болезнь Дауна, Альцгеймера, аутизм. Известны также изменения генома, при которых ребенок не способен к полноценному интеллектуальному развитию. Однако интеллектуальные способности человека слишком сложная система, здесь участвуют целые комплексы генов, и разобраться в них помогают исследования на животных, чаще всего мышах.
Так ученые в США искусственно добивались мутации определенных генов у мышей и затем наблюдали за их реакциями и жизнедеятельностью. Оказалось, некоторые мутации делали мышей «умнее» (они быстрее запоминали и узнавали объекты, лучше ориентировались в пространстве и справлялись с задачами), другие — «глупее». То есть умные мыши, а значит и люди, генетически отличны от своих глупых собратьев.
А что касается добра и зла? На этот вопрос попытались ответить голландские ученые, исследовавшие три поколения одной семьи. 14 мужчин из этой семьи отличались агрессивностью, импульсивностью, совершали незаконные и опасные поступки, например, одного из них судили за избиение родной сестры.
Выяснилось, что такое неблаговидное поведение мужской части было обусловлено «заболеванием», которое передавалось по Х-хромосоме. Женщины были здоровыми носителями, а «симптомы» проявлялись только у мужчин.
При введении такой же мутации в мышиные гены, испытуемые превращались в сумасшедших убийц, бездумно нападали на своих сородичей, жестоко их атаковали без повода.
Сами ученые не считают, что ими открыты гены агрессии, так как даже в рассмотренной семье, где у всех мужчин гены имели одинаковую мутацию, поведение их значительно отличалось. Поведенческая система так же сложна, как интеллект, и одним конкретным геном здесь не обойдешься.
Интересные данные о репродуктивном поведении были получены из наблюдений за двумя видами мелких грызунов полевок: горной и прерийной. Внешне они совершенно одинаковы, но самцы горной полевки ведут себя как полигамы и стремятся спариться с любой доступной самкой. С самцами прерийной полевки дело обстоит наоборот: они полностью моногамны, верны одной самке до конца жизни.
Как выяснилось, самцы одного вида отличаются от других геном, который регулирует усваивание организмом гормона вазопрессина. У самцов дон-жуанов ген блокировал восприятие гормона, поэтому они чувствовали себя холостыми и соответствующим образом себя вели.
Кроме того, было доказано, что тревожность и склонность к депрессиям у людей тоже обуславливается наследственностью. В этом случае самочувствие регулируется посредством серотонина и дофамина, они обеспечивают связь между нервными клетками. Переизбыток дофамина вызывает повышенную активность, а отсутствие приводит к обратным результатам, вплоть до отказа от пищи и смерти.
Человек, у которого мало дофамина скорее всего станет альпинистом, парашютистом или выберет другую экстремальную профессию, в отличие от того, чьи гены позволяют наслаждаться жизнью в спокойной домашней атмосфере.
Итак, наследственность дает нам определенные плюсы и минусы, а то, как мы будем использовать этот капитал, зависит только от нас, нашей культуры, морали и воспитания.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.
См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005.
Александр Марков
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.
См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005.
Александр Марков
Похожая статья, но с другими примерами: Слово о генетике поведения
Мораль для ЛЛ: все признаки особи зависят от двух вещей: генов и окружающей среды. Но это вы и так знаете. А если интересно, в какой степени зависит,-то тут уже надо читать.
Факты, добытые нейробиологами, говорят о материальной, нейрологической природе психики. Но для того, чтобы душа во всех ее проявлениях могла эволюционировать, этого, строго говоря, еще недостаточно. Эволюционировать могут не все признаки, а только генетически обусловленные. Чтобы меняться под действием отбора, признак должен быть врожденным, и он должен быть подвержен наследственной изменчивости. Но в первом приближении она все-таки верна, а для наших текущих целей этого достаточно).
Но что такое приобретенный признак? Бывают ли вообще признаки, совершенно не зависящие от генов? Вопрос может показаться странным: ясно ведь, что многое в нашем поведении и внешнем облике никак не связано с генами. Например, одежда, прическа, привычки, манера речи…
Хотя, если подумать, стиль одежды зависит от характера, от склада личности, желания или нежелания следовать моде, а склад личности — он ведь может зависеть от генов? Пожалуй, не все здесь так уж очевидно.
Степень врожденности и приобретенности признака на самом деле относительна: она зависит, с одной стороны, от вариабельности генов в популяции, с другой — от вариабельности среды. Почему так? Попробуем разобраться.
Когда генетики говорят о наследуемости признака, они имеют в виду, собственно, не признак как таковой, а различия по этому признаку, существующие между особями в изучаемой популяции. Если различий нет, если все особи по данному признаку одинаковы (скажем, имеют абсолютно одинаковую степень агрессивности), то генетики не смогут даже подступиться к такому признаку.
Например, если в популяции нет особей с числом сердец, отличным от одного, и если никакие известные мутации и никакие изменения среды не приводят к появлению двух или трех сердец, то генетики не смогут понять, от каких генов зависит количество сердец. Ясно, что признак наследственный, то есть какие-то гены его все-таки определяют, но какие именно — неизвестно.Признаки такого рода — абсолютно неизменчивые — генетиками, как правило, вообще не рассматриваются.
Изменчивость по любому признаку определяется отчасти генетическим разнообразием особей в популяции, отчасти — разнообразием условий среды. Под степенью наследуемости признака генетики понимают ту часть изменчивости по этому признаку, которая объясняется генетическим разнообразием. Это можно определить по силе корреляции между наличием тех или иных аллелей и выраженностью признака. “Степенью приобретенности”, соответственно, можно назвать обратную величину: ту долю фенотипической изменчивости, которая не объясняется генетической вариабельностью.
Отсюда напрямую вытекает относительность этих величин, то есть их зависимость от состояния генофонда популяции и вариабельности среды. Допустим, мы вывели “чистую линию” мышей или мух, у которых все гены одинаковы, как у однояйцевых близнецов. Если в этой лабораторной популяции и будет изменчивость по каким-то признакам, то вся она по определению будет объясняться только факторами. Иными словами, все признаки будут обладать нулевой наследуемостью.
Если же мы возьмем обычную, то есть генетически разнообразную, популяцию мышей и нам каким-то чудом удастся создать для всех особей абсолютно одинаковые условия развития, то наследуемость большинства признаков приблизится к единице.
Тут есть всякие осложняющие моменты, такие как стохастика индивидуального развития, эпигенетическое наследование, материнские эффекты и прочее, но давайте на минутку об этом забудем. Важно, что степень наследуемости любого признака может меняться в зависимости от ситуации. Между тем именно от нее, от этой вроде бы чисто формальной величины, зависят возможности эволюционных изменений данного признака. При нулевой наследуемости признак эволюционировать не может, как бы сильно он ни влиял на жизнеспособность и плодовитость. Отбор на такой признак действовать будет (например, особи с сильно развитым признаком будут оставлять больше потомства, чем особи со слабо развитым признаком), но это не приведет к эволюционным изменениям, потому что фенотипические различия, по которым идет отбор, не наследуются. Чем выше наследуемость, тем быстрее будут идти эволюционные изменения (то есть изменения частот аллелей в генофонде популяции) при фиксированной интенсивности отбора.
Некоторые признаки (например, количество рук) зависят от генов очень сильно, а от среды почти совсем не зависят. Но это только до тех пор, пока среда не выкинет какой-нибудь фокус! Включите в состав среды, в которой развивается эмбрион, лекарство под названием талидомид, которое некогда прописывали беременным женщинам в качестве снотворного и успокаивающего. Такое изменение среды запросто может привести к тому, что ребенок родится без рук, хотя гены у него в полном порядке. Если бы талидомид был рассеян повсюду и от него невозможно было спастись, то пошел бы отбор на выработку устойчивости к талидомиду. Отбор поддерживал бы мутации, блокирующие влияние талидомида на эмбрион. Гены, в которых закрепились бы такие мутации, мы стали бы называть генами двурукости или генами наличия рук, хотя такой ген на самом деле может быть просто геном фермента, расщепляющего талидомид. Но основное фенотипическое проявление этого гена будет состоять именно в том, что у ребенка будет две нормальные руки. И теперь мы уже не сказали бы, что у ребенка без этого гена “с генами все в порядке”.
Другие признаки, вроде бы зависят почти исключительно от среды, а их генетическая составляющая пренебрежимо мала — но только до тех пор, пока мы не попадем в некие особые условия, в которых роль среды сойдет на нет, а генетическая составляющая выйдет на первый план.
Мораль в том, что абсолютно любой поведенческий или психологический признак в принципе находится под влиянием генов и при определенных условиях может эволюционировать. Поскольку эволюция (хотя бы за счет дрейфа — случайных колебаний частот аллелей) идет постоянно и неизбежно, то можно даже сказать, что абсолютно все признаки, по которым есть минимальная наследственная вариабельность, хоть чуть-чуть, но эволюционируют. Вопрос в том, какие из них действительно это делают (или делали в прошлом) с ощутимой скоростью, а какие — не очень. Какие менялись направленно, под действием положительного отбора полезных мутаций, какие лишь вяло колебались за счет дрейфа, а какие прочно удерживались на постоянном уровне за счет очищающего отбора, отбраковывавшего отклонения от “нормы” в любую сторону.
На сегодняшний день у биологов нет ни малейших сомнений в том, что поведение животных, включая человека, во многом зависит от генов. Но гены, конечно, определяют не поведение как таковое. Они определяют лишь общие принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти “вычислительные устройства” способны к обучению и постоянно перестраиваются в течение жизни.
Сложность и неоднозначность взаимосвязей между генами и поведением вовсе не противоречат тому факту, что определенные мутации могут менять поведение вполне определенным образом. При этом мы, конечно, понимаем, что каждый поведенческий (и вообще любой) признак в конечном счете зависит не от одного-двух, а от огромного множества генов, работающих согласованно. Если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что “ученые открыли ген речи”. Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать. И вовсе не факт, что изменения именно этого гена в ходе эволюции привели к появлению языковых способностей у наших предков. Это могло быть так, но могло быть и иначе. Эволюционное приобретение лингвистических способностей могло быть связано с закреплением мутаций либо в этом гене, либо в каком-то другом, либо в нескольких генах параллельно. Это были мутации, которые сделали эти гены такими, какие они есть сейчас. Не исключено, что эти мутации сегодня имеются у 100% людей. Поэтому “выловить” их, сравнивая между собой человеческие геномы, невозможно. Их можно обнаружить, лишь сравнивая геномы людей с геномами других приматов.
А. Марков “Эволюция человека: Обезьяны нейроны и душа”
http://www.e-reading.club/book.php?book=1024502
Александр Марков
Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию
Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов
Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.
egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Гены, мозг и социальное поведение связаны сложными отношениями. Эти отношения действуют на трех временных масштабах: (i) на уровне физиологии — влияя на активность мозга (сплошные линии), (ii) на уровне развития организма — через экспрессию генов в мозге и эпигенетические модификации (линия из точек), (iii) на эволюционном уровне — через естественный отбор (пунктирная линия). Направление влияния: розовые стрелки — от социальных отношений к изменению функций мозга и поведения, стрелки цвета морской волны — от генов к социальному поведению. Изображенные животные (сверху по часовой стрелке): зебровая амадина (T. guttata), цихлида (A. burtoni), медоносная пчела (A. mellifera), дрозофила (D. melanogaster), прерийная полёвка (M. ochrogaster), крыса (R. norvegicus), огненный муравей (S. invicta). Курсивом на фотографиях даны названия генов, связанных с тем или иным видом социального взаимодействия. Изображение из обсуждаемой статьи Robinson et al.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило. Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином.
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов.
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Список литературы
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.
Список литературы
Люди отличаются друг от друга рядом психологических характеристик. Эти различия вызваны как неодинаковыми условиями жизни, так и несходными генотипами, поскольку генотипы людей содержат разные формы генов. Соотносительный вклад наследственности и среды в разнообразие людей по психологическим свойствам и поведению изучает психогенетика. Для оценки влияния наследственности и среды на поведение человека ученые сравнивают людей, имеющих различную степень генетической общности (однояйцевых и многояйцевых близнецов, родных и сводных братьев и сестер, детей и их биологических и приемных родителей).
Многие гены существуют в нескольких формах, подобно тому, как есть разные формы гена, определяющего цвет глаз. Некоторые гены имеют десятки форм. Генотип конкретного человека содержит два экземпляра каждого гена, формы которых могут быть разными, а могут быть и одинаковыми. Один унаследован от отца, другой – от матери. Сочетание форм всех генов уникально для каждого человеческого организма. Эта уникальность лежит в основе генетически обусловленных различий между людьми. Вклад генетических различий в разнообразие людей по психологическим свойствам отражает показатель, называемый “коэффициент наследуемости”. Например, для интеллекта коэффициент наследуемости составляет, по меньшей мере, 50%. Это не означает, что 50% интеллекта дано человеку от природы, а остальные 50% нужно добавить путем обучения, тогда интеллект будет 100 баллов. Коэффициент наследуемости не имеет отношения к конкретному человеку. Его вычисляют, чтобы понять, в чем причина отличия людей друг от друга: возникают ли различия из-за того, что у людей неодинаковые генотипы, или потому, что их по-разному учили. Если бы коэффициент наследуемости интеллекта оказался близок к 0%, то можно было бы сделать вывод, что только обучение формирует различия между людьми, и применение одних и тех же воспитательных и образовательных приемов к разным детям будет всегда приводить к одним и тем же результатам. Высокие значения коэффициента наследуемости означают, что даже при одинаковом воспитании дети будут отличаться друг от друга в силу своих наследственных особенностей. Конечный результат, однако, не предопределен генами. Известно, что дети, усыновленные в благополучные семьи, по уровню интеллектуального развития оказываются близки к своим приемным родителям и могут значительно превосходить биологических. В чем же тогда выражается влияние генов? Поясним это на примере конкретного исследования.*
Ученые обследовали две группы приемных детей. Условия в приемных семьях были у всех одинаково хорошими, а биологические матери детей различались по уровню интеллекта. Биологические матери детей из первой группы имели интеллект выше среднего. Примерно половина детей из этой группы продемонстрировала интеллектуальные способности выше средних, другая половина – средние. Биологические матери детей второй группы имели несколько сниженный (но в пределах нормы) интеллект. Из этой группы 15% детей имели такие же невысокие оценки интеллекта, у остальных детей уровень интеллектуального развития соответствовал среднему. Таким образом, при одинаковых условиях воспитания в приемных семьях, интеллект детей, в определенной степени, зависел от интеллекта их кровных матерей.
Приведенный пример может служить иллюстрацией существенных различий между понятием наследуемости психологических качеств и наследуемости некоторых физических особенностей человека, таких как цвет глаз, кожи и т.д. Даже при высоком уровне наследуемости психологического признака генотип не предопределяет его конечного значения. От генотипа зависит, как ребенок будет развиваться в определенных условиях среды. В некоторых случаях генотип задает “пределы” выраженности признака.
К содержанию
Влияние наследственности на интеллект и характер в разных возрастах
Исследования показывают, что гены отвечают за 50-70% разнообразия людей по уровню интеллекта и за 28-49% различий по выраженности пяти “универсальных”, наиболее важных, свойств личности:
уверенности в себе,
тревожности,
дружелюбию,
сознательности,
интеллектуальной гибкости.
Это данные – для взрослых. Однако степень влияния наследственности зависит от возраста. Результаты психогенетических исследований не подтверждают распространенное мнение, что с возрастом гены все меньше влияют на поведение человека. Генетические различия, как правило, сильнее проявляются в зрелом возрасте, когда характер уже сформировался. Значения коэффициента наследуемости большинства изученных психологических свойств для взрослых выше, чем для детей. Наиболее точные данные получены по наследственной обусловленности интеллекта. В младенчестве внутрипарное сходство многояйцевых близнецов такое же высокое, как для однояйцевых, но после трех лет оно начинает снижаться, что можно объяснить большим влиянием генетических различий. При этом нарастание различий происходит не линейно. В ходе развития ребенка есть этапы, в которые различия между детьми вызываются преимущественно влиянием среды. Для интеллекта это возраст 3-4 года, а для формирования личности – предподростковый возраст 8-11 лет.
Кроме того, в разных возрастах действуют разные генетические факторы. Так среди наследственных факторов, обуславливающих различия по интеллекту, есть как стабильные, т.е. действующие во всех возрастах (это, возможно, гены, связанные с так называемым “общим интеллектом”), так и специфические для каждого периода развития (вероятно, гены, определяющие развитие частных способностей).
К содержанию
Влияние наследственности на асоциальное поведение
Поскольку во всех развитых странах преступность и алкоголизм биологических родителей являются распространенными причинами утраты ребенком кровной семьи и помещения в приемную, мы подробнее рассмотрим данные психогенетики о влиянии наследуемости на эти формы поведения. Семейные и близнецовые исследования криминального поведения проводятся уже более 70 лет. Они дают очень разные оценки наследуемости, наиболее часто попадающие в диапазон 30-50%. “Верхние” значения наследуемости получают при изучении близнецов. Некоторые исследователи считают, что близнецовый метод может давать завышенные оценки наследуемости, так как он не всегда позволяет отделить генетические влияния от особых условий среды, в которых растут однояйцевые близнецы. Методом изучения приемных детей получают значения коэффициента наследуемости примерно в 2 раза ниже, чем при изучении близнецов.
К содержанию
Датское исследование приемных детей
Рисунок 1. Количество проанализированных семей,
различающихся по наличию судимости у биологического и приемного отца
(датское исследование).
Наиболее систематические исследования наследуемости криминального поведения методом изучения приемных детей были проведены в скандинавских странах – Дании и Швеции. Благодаря сотрудничеству родителей-усыновителей и ряда органов власти, датским ученым удалось проследить судьбу более 14 000 лиц, усыновленных в период с 1924 по 1947 гг. На рисунках 1 и 2 показаны результаты исследования судимости у мужчин, выросших в приемных семьях. Они относятся только к преступлениям против собственности, поскольку количество преступлений, связанных с применением насилия, было мало.
Рисунок 2. Доля сыновей, имевших судимости, в семьях,
различающихся по наличию судимости у биологического и приемного отца
(датское исследование).
Из рисунка 2 видно, что доля осужденных среди детей, биологические отцы которых были преступниками, несколько повышена по сравнению с теми детьми, биологические родители которых не нарушали закон. Кроме того, оказалось, что чем больше судимостей у биологического отца, тем выше риск для потомка стать преступником. Было показано также, что братья, усыновленные разными семьями, имели тенденцию к конкордантности (совпадению) по преступному поведению, особенно в тех случаях, когда их биологический отец был преступником. Эти данные свидетельствуют об определенной роли наследственности в повышении риска криминального поведения. Однако, как и из приведенного выше примера с интеллектом, из данных на рисунке 2 следует, что неблагоприятная наследственность не предопределяет будущее ребенка – из мальчиков, биологические отцы которых были преступниками, впоследствии нарушили закон 14%, остальные 86% не совершили противоправных действий.
Кроме того, оказалось, что на детей с неблагоприятной наследственностью приемная семья оказывает особенно сильное влияние, которое может быть как положительным, так и отрицательным. Из мальчиков, выросших в приемных семьях, 16% впоследствии совершили преступления (против 9% в контрольной группе). Среди биологических отцов этих детей 31% имели проблемы с законом (против 11% в контрольной группе). Т.е. хотя уровень преступности среди приемных детей был выше, чем в обществе в среднем, он был почти в два раза ниже, чем среди их биологических отцов. По мнению ряда ученых, это свидетельствует о том, что благоприятная обстановка в приемной семье снижает риск криминального поведения у детей с отягощенной наследственностью.
Но в некоторых случаях семейная среда может усиливать риск криминального поведения. Как видно из рисунка 2, дети, у которых и биологический и приемный отец имели судимости, совершали преступления чаще других. (К счастью, таких семей было очень мало (рис.1)). Это значит, что существуют генотипы, обладающие повышенной уязвимостью к неблагоприятным аспектам семейной среды (подобные явления в психогенетике называют генотип-средовым взаимодействием).
К содержанию
Шведское исследование
При исследовании приемных детей в Швеции ученые сначала не нашли даже слабой связи между судимостью детей, воспитанных приемными родителями, и поведением их биологических отцов. Среди шведов преступления были в основном следствием злоупотребления алкоголем. Когда ученые исключили из анализа этот вид преступления, они обнаружили слабую положительную связь между наличием судимости у потомства и их кровных отцов (рис. 3). При этом преступления в обоих поколениях оказались не тяжкими. В основном это были кражи и мошенничество.
Рисунок 3. Процент судимых среди усыновленных лиц
в зависимости от типа семьи
(шведское исследование).
Подтвердилась и чувствительность детей с наследственной отягощенностью к особенностям приемной семьи. Среди усыновленных шведов не наблюдалось повышения уровня преступности по сравнению со средним показателем по стране, несмотря на то, что среди их биологических родителей процент осужденных был увеличен. Среди приемных родителей-шведов не было лиц, имевших судимости. Т.е. максимально благоприятная семейная среда “нейтрализовала” эффект генетического груза. С другой стороны, наиболее высокий риск нарушить закон наблюдался у тех детей с неблагоприятной наследственностью, приемная семья которых имела низкий социально-экономический статус (рис. 3).
К содержанию
Американское исследование
Рисунок 4. Результаты изучения причин, приводящих к формированию асоциальной личности,
в американском исследовании приемных детей
(стрелки означают статистически значимую связь между характеристиками родителей и формированием асоциальных наклонностей у детей).
Скандинавские исследования включали в себя анализ поведения приемных детей, родившихся в первой половине 20-го века. Сходные результаты были получены и в современной работе американских ученых из штата Айова. Правда, в ней анализировали не судимость, а наличие у приемных детей склонности к асоциальному поведению более широкого спектра. Оценивали поведение, которое служит основанием для диагноза “асоциальное расстройство личности” и включает в себя частое совершение поступков, за которые могут арестовать, а также такие черты как лживость, импульсивность, раздражительность, пренебрежение безопасностью, безответственность и бессовестность. Учитывали также целый ряд характеристик приемной семьи, которые могли бы повлиять на формирование подобных наклонностей. На рисунке 4 перечислены эти характеристики и показаны основные результаты исследования на тот момент, когда усыновленные лица уже достигли взрослого возраста (им было от 18 до 40 лет). Были проанализированы данные только о мужчинах, поскольку количество женщин с “асоциальным поведением” оказалось слишком мало. Из 286 исследованных мужчин сорока четырем был поставлен диагноз “асоциальное расстройство личности”. Результаты свидетельствовали, что в развитие данного расстройства вносят независимый вклад три фактора:
судимость биологического родителя (генетический),
пьянство или асоциальное поведение одного из членов приемной семьи (средовой),
помещение ребенка с неблагоприятной наследственностью в семью с низким социально-экономическим статусом (генотип-средовое взаимодействие).
К содержанию
Что представляет собой наследственная предрасположенность к асоциальному поведению?
Очевидно, что у человека гены не запускают конкретное поведение подобно тому, как это происходит с некоторыми инстинктивными действиями животных. Связь между риском преступного поведения и генами опосредствована психологическими особенностями. Причем известно, что на риск криминального поведения могут влиять различные неблагоприятные сочетания психологических свойств, и каждое из этих свойств находится под контролем нескольких или большого количества генов и разных факторов среды.
Первым кандидатом на роль биологического “субстрата” асоциальных наклонностей стала Y-хромосома (хромосома, которая содержится только в генотипе мужчин и определяет мужской пол). Примерно у одного из 1100 мужчин в результате биологических ошибок в сложном процессе создания зародышевой клетки в генотипе оказывается вместо одной две или более Y-хромосом. Эти мужчины отличаются невысоким интеллектом (у нижней границы нормы) и высоким ростом. В 60-х годах XX века было впервые показано, что среди отбывающих наказание преступников со сниженным интеллектом непропорционально много (4%) мужчин с лишней Y-хромосомой. Сначала связь между этим генетическим дефектом и криминальными наклонностями казалась очевидной: поскольку мужчины агрессивнее женщин, чаще совершают преступления и в отличие от женщин имеют Y-хромосому, наличие двух и более Y-хромосом должно приводить к формированию агрессивного “супермужчины”. Но в дальнейшем выяснилось, что преступники с лишней Y-хромосомой не более агрессивны, чем другие заключенные, и в тюрьму они попадают, в основном, совершив кражи. При этом у мужчин с данной генетической патологией была найдена связь между снижением интеллекта и вероятностью быть осужденным. Не исключено, однако, что сниженный интеллект влиял не на риск совершить преступление, а на риск быть пойманным и посаженным в тюрьму. Например, один из мужчин с лишней Y-хромосомой несколько раз проникал в дома с помощью взлома, когда хозяева находились в помещении.
Исследования мужчин с лишней Y-хромосомой позволяют сделать, по меньшей мере, два важных заключения. Во-первых, связь между генами и преступностью нельзя объяснить генетически обусловленным возрастанием агрессивности или жестокости, как можно было бы предположить, исходя из “здравого смысла”. Этот вывод согласуется и с данными исследований приемных детей, в которых влияние наследственности обнаружилось только для преступлений против собственности. Во-вторых, даже среди мужчин с такой очевидной наследственной аномалией, как лишняя Y-хромосома, большинство не становится преступниками, речь идет только о некотором повышении риска подобного поведения среди них.
С середины 90-х годов ученые проводят поиск конкретных генов, которые могли бы влиять на величину риска криминального поведения. Все полученные к настоящему времени данные еще нуждаются в подтверждении и уточнении. Однако заслуживает упоминания исследование, проведенное в Новой Зеландии. В нем было показано, что среди мальчиков, подвергавшихся жестокому обращению в семье, носители формы гена, обеспечивающего более высокую активность фермента МАОА в организме, были менее склонны к асоциальным поступкам, чем носители другой формы гена – низкоактивной. Среди детей, выросших в благополучных семьях, связи между асоциальными наклонностями и геном МАОА не было. Т.е. лица с определенными генетическими особенностями оказались менее уязвимыми к жестокому обращению с ними родителей. Это исследование заставило ученых задуматься о том, правомерно ли вообще говорить о наследственной предрасположенности (склонности) к асоциальному поведению. Возможно, более точным было бы понятие генетически обусловленной уязвимости (незащищенности) некоторых детей по отношению к неблагоприятным, травмирующим событиям.
Гены, которые нас воспитали
Андрей Константинов, «Русский репортер» № 7-2011
Скоро вместо гороскопов и психологических тестов мы будем заглядывать в хромосомы. Наука уже накопила немало сведений о том, как связаны гены человека и его психика. Если верить представителям науки психогенетики, то агрессия, альтруизм, интеллект и множество других качеств определяются не только воспитанием, но и наследственностью
Сейчас можно работать с ДНК и искать, какие молекулы контролируют поведение… Наука будет объяснять то, что мы сейчас не понимаем, — поведение, эти слова знаменитый нобелевский лауреат Джеймс Уотсон сказал в интервью «Русскому репортеру», когда два года назад приезжал Москву. Речь шла о том, каких значительных открытий стоит ждать.
Еще совсем недавно для изучения связи генов и психики существовал только один инструмент — однояйцовые близнецы. Ученые буквально охотились за братьями или сестрами, которым повезло родиться с одинаковым набором генов. Особенно ценными считались те экземпляры, которые воспитывались в разных семьях: только в этом случае можно относительно четко отделить влияние среды от вклада генов. Да и то подобные эксперименты до конца корректными назвать нельзя, ведь семьи-то хоть и разные, но, как правило, относящиеся к одной и той же культуре. Вот если бы один ребенок с младенчества рос в семье американского миллионера, а его однояйцового брата-близнеца воспитывал индийский крестьянин, тогда данные были бы объективными.
Но революция в молекулярной биологии не оставила в стороне поведенческие науки. С 1990-х годов идет поиск конкретных генов, влияющих на поведение и характер.
Еще в школьном курсе биологии нас учили, что один и тот же ген может присутствовать в разных вариантах — помните историю про монаха Менделя и цветки фасоли? Человеческая психика — явление не такое простое, как окраска цветка. Но особенности личности можно померить с помощью тестов. А потом посмотреть, какой вариант того или иного гена присутствует в хромосомах.
Конечно, не все так просто. На каждую черту характера могут влиять сотни генов. Не нужно забывать и о том, что наследуются не сами психические качества, а биологические факторы, влияющие на них. Роль генов больше всего напоминает регулятор громкости радиоприемника: можно усилить или ослабить звук, но слова песни от этого не изменятся. Точно так же гены могут увеличивать агрессивность человека, но куда он направит эту агрессию — на битье морд или на сочинение триллеров, — зависит от воспитания, образования и культуры.
Альтруизм
Мы с детского сада привыкли делить людей на добрых и злых. Добрые — это те, кто дает нам поиграть своей машинкой, а злые — те, кто не дает. А что на этот счет написано в генетической карте, где тут «ген добра»? Есть такой ген. Его нашла в 2010 году группа ученых из Боннского университета. Проанализировав ДНК студентов, больше других склонных жертвовать деньги на благотворительность, они сосредоточились на гене COMT. Он связан с выработкой таких веществ, как дофамин, окситоцин и вазопрессин, относящихся к классу нейромедиаторов, их динамика регулирует наше социальное поведение.
У людей примерно поровну распределены два варианта этого гена: COMT-Val и COMT-Met. Те, кому выпал COMT-Val, дают на благотворительность в среднем в два раза больше, чем те, чьей судьбой стал COMT-Met.
Утешением «природным эгоистам» может послужить то, что проявления доброты связаны и со многими другими генами. Но если в генетическом паспорте человека COMT-Met сочетается с «плохими» вариантами генов OXTR и AVPR1, тоже влияющих на склонность людей совершать благородные поступки, то перед вами наверняка бесчувственный эгоист, сколько бы он ни доказывал обратное!
Агрессия
В былые времена теологи любили поспорить о том, имеет ли зло собственную сущность или происходит от недостатка добра. Генетика однозначно свидетельствует: помимо слабых вариантов «генов добра» есть и собственно «гены зла», заставляющие людей и животных вести себя агрессивно.
На один из таких генов наткнулся голландский генетик Ганс Бруннер, исследовав семью, в трех поколениях которой 14 мужчин были настоящими злодеями и закоренелыми преступниками. Для каждого из них были характерны импульсивные вспышки ярости. Оказалось, что они связаны с мутацией гена, кодирующего фермент моноаминоксидазу-А. Провели эксперимент. Мышам «испортили» этот ген, и грызуны-мутанты стали яростно кидаться на своих собратьев. Очевидно, сюжеты фильмов типа «28 недель спустя» или «Я — легенда» не такие уж фантастические.
И все же в данном случае речь, скорее, идет о редком заболевании: эта мутация очень малочастотна. А злодеев так много! Среди людей есть и другие мутации, которые не выключают фермент полностью, как в той злополучной семье, но ослабляют его действие. Исследуя таких людей, ученые выяснили, что если они воспитываются в благоприятных условиях, то ничем не отличаются от прочих мальчиков и девочек, а вот в плохих условиях склонны вести себя значительно более агрессивно, чем их сверстники.
Кстати, группа исследователей из МГУ под руководством Марины Егоровой в 2009 году показала, что люди могут иметь «бойцовский ген». Но если у них развиты управляющие функции — самоконтроль, способность ставить цели и планировать свое поведение, — то они, наоборот, будут отличаться склонностью к сопереживанию и терпимостью, то есть как раз теми добродетелями, которых так не хватает агрессорам. Так что гены генами, а о воспитании забывать не стоит.
Счастье
Каждый, конечно, сам кузнец своего счастья, но все же ковать его приходится из того материала, которым нас обеспечила природа. К сожалению, одни люди рождаются более склонными к тревоге и депрессии, чем другие. Близнецовые исследования, проведенные Кеном Кендлером, показали, что тревожность и депрессивность на 40–50% определяются наследственностью. Было найдено «вещество счастья» — нейропептид серотонин, недостаток которого и обеспечивает нам тревогу и плохое настроение. Антидепрессанты, такие как знаменитый прозак, усиливают действие серотонина.
Один из генов, регулирующих количество серотонина в мозге, был исследован Д. Мерфи и П. Лешем. Этот ген — регулятор транспортера серотонина под названием 5НТТ распространен в двух вариантах. Один способствует тревоге и тоске, а другой — наоборот.
Кстати, первый вариант этого гена существенно повышает вероятность вспышек агрессии, лишний раз подтверждая связь между агрессией и несчастьем. В общем, если при раздаче генетических карт вам выпал несчастливый вариант 5НТТ, лучше не поскупиться и инсталлировать вместо него счастливый. Конечно, если техника позволит.
Интеллект
С «генами ума» ученые начали возиться еще в середине XX века, используя близнецовый метод. Было много скандалов, споров и даже обвинений в фальсификации результатов. Дискуссия из научной порой превращалась в политическую. Консерваторы считали, что ум может быть унаследован только от благородных родителей, а левые настаивали на всеобщем равенстве и призывали улучшать систему образования. Сейчас страсти слегка улеглись. Считается, что интеллект то ли наполовину, то ли на две трети определяется генами. Вопрос — какими именно.
Впервые об открытии «гена интеллекта» заявил еще в 1997 году Роберт Пломин, показавший, что у большинства исследованных им вундеркиндов одинаково изменен ген IGF2R. Предполагают, что этот вариант IGF2R связан с более эффективным поглощением углеводов мозгом. Воздействием этого гена можно объяснить изменение коэффициента интеллекта на 4 балла, что совсем не мало.
Мужественность
Не приходится сомневаться, что многие гены «настоящего мужика» помещаются на хромосоме Y: она есть только у представителей мужского пола, и на ней должны накапливаться гены, полезные самцам. В журнале Nature даже публиковалась шуточная карта Y-хромосомы, на которой размещались гены любви к пиву, футболу и боевикам, памяти на анекдоты, неспособности к романтическим речам и так далее. В реальности все эти черты не управляются генами напрямую, а являются результатом отравления мозга мужским половым гормоном тестостероном. Но подробности работы этих генов пока неизвестны.
Зато известно другое: доминантными самцами не рождаются. Есть такая красивая аквариумная рыбка — хаплохромис. В присутствии доминантного самца подчиненные самцы некрасивые, почти бесцветные, самками не интересуются и тихо сидят в уголочке. Но стоит выловить доминанта, как у подчиненного самца в нейронах гипоталамуса включается ген egr1, запускающий на полную производство полового гормона, и бывший тихоня стремительно преображается, обретая цвет, лоск и крутизну.
Похожие изменения происходят и в мозге приматов, включая людей: под влиянием ситуации, поведения окружающих и собственных мыслей целые ансамбли генов способны включаться и выключаться в считанные минуты.
Постоянство в любви
Начнем издалека. Живут себе два вида мелких грызунов — прерийная и горная полевка. Внешне их трудно различить: мышки — они и есть мышки. Но самцы прерийной полевки, выбрав самку, хранят ей верность всю жизнь, а вот у горной полевки самцы неразборчивы в связях и равнодушны к потомству.
Любовь до гробовой доски у самцов-грызунов, как и у самцов-людей, связана, помимо прочего, с нейромедиатором под названием вазопрессин. Если самцу моногамной полевки ввести этот вазопрессин, он полюбит первую встречную самку навсегда, а вот если блокировать у него рецепторы, реагирующие на вазопрессин, он начнет вести беспорядочную половую жизнь.
Разница в поведении между верными и неверными мышами зависит от варианта гена вазопрессинового рецептора. Поменяв этот ген, можно заставить полигамного самца стать верным мужем. Вот теперь явно настала пора переходить к людям.
Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин с одним из вариантов гена RS3 334 возникновение романтических отношений вдвое реже приводит к браку, чем у прочих. Если они все-таки женятся, у них вдвое больше вероятность оказаться несчастными в браке, а их жены чаще всего оказываются недовольны отношениями в семье. Теперь вы понимаете, почему все девушки должны изучать молекулярную биологию?!
Гомосексуализм
Число видов живых существ, у которых зоологи подглядели гомосексуальные контакты, приближается к пяти сотням, причем все они относятся к однополой любви гораздо спокойней нас. Может быть, дело в генах, а не в западной пропаганде?
И таки да, исследования Дж. Бейли и Р. Пилларда показали, что у однояйцовых близнецов сходство по гомосексуальности составляет 50%, а у разнояйцовых — лишь 24%. Для сенсации в прессе оставалось обнаружить «ген гомосексуальности», и вскоре он был найден Дином Хамером: участок Xq28 на верхнем конце длинного плеча Х-хромосомы послужит в вашем генетическом паспорте отметкой о повышенной вероятности тяги к представителям своего пола. Проверьте этот участок, прежде чем выкладывать в Сеть расшифровку своего генома!
Долгое время ученым не давал покоя вопрос, почему гены гомосексуальности не были отсеяны естественным отбором, — ведь любовь любовью, а дети от таких отношений не получаются. Одна из самых популярных теорий утверждает, что гомосексуализм — следствие отбора на бисексуальность. «Феминизированные» бисексуалы могли выжить в мужских сообществах, находя друзей и покровителей в длительных военных походах, да и у женщин пользовались спросом, так как были неагрессивными и заботливыми отцами.
Религиозность
Ученые, для которых, как известно, нет ничего святого, предположили, что религиозность тоже может быть связана с генами. И действительно, появились данные, что у однояйцовых близнецов больше сходства в вопросах духовности.
А в 2004 году Дин Хамер (тот самый скандалист, который открыл «ген гомосексуальности») опубликовал книгу «Ген Бога: как вера закреплена в наших генах», в которой связывал со склонностью к религиозности и ее отсутствием разные варианты гена VMAT2. Духовные люди, не говоря уже о лицах, облеченных саном, конечно, пришли в бешенство от столь вредной книги. И были совершенно правы: проверка показала, что вариации VMAT2 объясняют лишь около 1% различий в религиозности, да и качество самого исследования, опубликованного не в научном журнале, а лишь в виде популярной книжки, вызывает сомнения. Зато оно попало на обложку Time.
Страсть к приключениям
Ген D4DR с 11-й хромосомы кодирует рецептор дофамина — вещества, связанного с работой центра удовольствия в нашем мозге. Мышь с поврежденным геном дофамина ничего не хочет и в конце концов умирает от голода, но стоит вколоть дозу дофамина ей в мозг, как она становится чрезвычайно любознательной, склонной к риску и безрассудствам. Люди, которым не хватает дофамина, тоже становятся заторможенными и безынициативными, а те, у кого его слишком много, все время ищут новых ощущений.
У гена D4DR есть «короткий» и «длинный» варианты. Люди с длинным вариантом менее чувствительны к дофамину, поэтому, чтобы ощутить внутреннее поощрение, им нужно что-нибудь особенное. Дин Хамер, приложивший руку и к исследованиям D4DR, в свойственной ему манере назвал его «геном приключений». Если в вашей генетической карте указан длинный вариант D4DR, вы, скорее всего, легки на подъем, любознательны и экстравагантны, склонны нарушать правила. Кроме того, обладание этим вариантом гена повышает риск алкоголизма и наркомании.
Впрочем, все не так страшно: по данным Хамера, этот ген лишь на 4% определяет склонность к авантюрам, хотя в целом она зависит от генов на 40%. Просто на нее, как и на другие черты личности, влияют десятки и сотни генов. А кто сказал, что психогенетика — это просто?
Политические предпочтения
В свое время Карл Маркс искал основу, базис любых идеологий в экономике. Сейчас модно искать такую основу в мозге, а то — и прямо в генах. Ряд независимых исследований разлученных близнецов показал, что приверженность консервативной или либеральной идеологии в значительной степени носит наследственный характер: не менее трети вариабельности по политическим взглядам объясняется генами. Нередко уже в дошкольном возрасте становится ясно, будет ли человек, когда вырастет, «почвенником» или «реформатором».
Первый претендент на гордое звание «гена либерализма» — это все тот же длинный вариант D4DR, связанный с любовью ко всему новому («ген консерватизма» — короткий вариант D4DR). Но доказать связь вариантов этого гена с политическими предпочтениями долго не удавалось.
Лишь в конце 2010 года вышла статья Дж. Фоулера, в которой он на основании данных многолетнего исследования показал, что эта связь не прямая, а зависит от сочетания двух факторов: варианта гена и количества друзей в юности. Вероятность того, что перед вами вольнодумец, резко повышается, если у человека длинный вариант D4DR, а в школе и институте у него было много друзей.
Объясняют это так: если человек, любящий все новое, в молодости общается с большим числом разных людей, он учится благожелательно относиться к различающимся взглядам на мир и в дальнейшем будет терпимее к нетрадиционным идеям, то есть станет либералом.
Как видим, генетической карты все же недостаточно, чтобы предсказать, как именно «сыграют» многие гены в поведении человека.
Портал «Вечная молодость» http://vechnayamolodost.ru
28.02.2011
Фантазировать о своих возможностях, не зная ограничений – безответственно. Увлекаться психологией, забывая про физиологию и генетику – неверно. Высшее растет через низшее, и азы генетики должен знать любой психолог. Неправда, что новорожденный – это только тельце с набором генов: новорожденный – это уже член общества, это чей-то ребенок, его уже любит его мама и готов воспитывать его отец. Никто пока не знает, есть ли с рождения у ребенка хотя бы зачатки разума, воли и духа, но уверенно можно сказать одно: у ребенка с рождения есть его гены, которые определяют его жизнь и развитие. Генетика человека – это врожденные особенности человека, передаваемые через гены.
Гены – это участки ДНК, несущие информацию о наследственности. Врожденные особенности человека, передаваемые через гены – генетика человека. Генотип – это набор генов организма, фенотип – это внешние проявления этих генов, набор признаков организма. Фенотип – это все то, что можно увидеть, посчитать, измерить, описать, просто глядя на человека (голубые глаза, светлые волосы, низкий рост, темперамент – холерик и так далее).
У мужчин более изменчив генотип, у женщин – фенотип.
По мнению некоторых генетиков, гены передают программы в большей степени не следующему поколению, а через поколение, то есть ваши гены будут не у ваших детей, а у ваших внуков. А у ваших детей – гены ваших родителей.
Что определяют наши гены? Гены определяют наши физические и психические особенности, гены задают, что мы, как люди, не можем летать и дышать под водой, но можем обучаться человеческой речи и письму. Мальчики легче ориентируются в предметном мире, девочки – в мире отношений. Кто-то родился с абсолютным музыкальным слухом, кто-то – с абсолютной памятью, а кто-то с самыми средними способностями.
Способности ребенка зависят и от возраста родителей. Гениальные дети чаще всего рождаются в паре, где матери 27 лет, отцу 38. Однако самые здоровые дети появляются у более молодых родителей, когда матери от 18 до 27. Ваш выбор? Гены определяют многие наши черты характера и склонности. У мальчиков – это склонность заниматься машинками, а не куклами. Гены влияют на наши индивидуальные предрасположенности, в том числе к болезням, к асоциальному поведению, к таланту, к физической или интеллектуальной деятельности и т.д. Можно ли утверждать, что у всех людей с детства есть природная склонность к добру, что человек по природе своей – добр? Это один из центральных вопросов, по которому не утихают споры среди психологов.
При этом важно всегда помнить: склонность подталкивает человека, но не определяет его поведения. За склонность отвечают гены, за поведение – человек. Да и склонностями своими можно работать: какие-то развивать, делать любимыми, а какие-то оставлять вне своего внимания, гасить их, забывать…
Гены определяют время, когда какой-то наш талант или склонность проявится или нет.
Гены определяют время, когда какой-то наш талант может проявиться. Попал в удачное время, когда гены готовы – сделал чудо. Промахнулся по времени – пролетаешь мимо. Сегодня восприимчивость ребенка к развивающим процессам высокая – он «белый лист», «впитывает только хорошее» и «очень талантлив», а спустя год: «ничего не понимает», «что в лоб, что по лбу» и «яблочко от яблони недалеко падает» (с грустью).
Гены определяют, когда у нас просыпается половое влечение, и когда оно засыпает. Гены влияют и на счастье, и на черты характера.
Проанализировав данные по более чем 900 парам близнецов, психологи Эдинбургского университета обнаружили доказательства существования генов, определяющих черты характера, склонность к счастью, способность легче переносить стресс.
Агрессивность и доброжелательность, гениальность и слабоумие, аутизм или экстраверсия – передаются детям от родителей как задатки. Все это изменяемо воспитанием, но в разной степени, поскольку и задатки бывают разной силы. Обучаем ребенок или нет, это также связано с его генетикой. И тут же заметим: здоровые дети вполне обучаемы. Человеческая генетика делает человека исключительно обучаемым существом!
Гены – носители наших возможностей, в том числе возможностей к изменению и совершенствованию. Интересно, что у мужчин и женщин в этом отношении разные возможности. Мужчины чаще, чем женщины, рождаются с теми или иными отклонениями: среди мужчин больше тех, кто будет очень высоким и очень низким, очень умным и наоборот, талантливым и идиотом. Похоже, что на мужчинах природа – экспериментирует… При этом, если уж мужчина таким родился, ему изменить это в течение жизни очень сложно. Мужчина привязан к своему генотипу, его фенотип (внешнее проявление генотипа) – меняется слабо.
Родился длинным – длинным и останешься. Коротышка может с помощью спорта подняться на 1-2 сантиметра, но не более.
У женщин ситуация другая. Женщины рождаются более в среднем одинаковыми, среди них биологических, генетических отклонений меньше. Чаще среднего роста, среднего интеллекта, средней порядочности, идиоток и отстоя среди женщин меньше, чем среди мужчин. Но и выдающихся в интеллектуальном или нравственном отношении – аналогично. Похоже, что эволюция, проводя на мужчинах эксперименты, на женщинах решает не рисковать и вкладывает в женщин все самое надежное. При этом индивидуальная (фенотипическая) изменчивость у женщин выше: если девочка родилась маленькой относительно других, она сумеет вытянуться на 2-5 см (больше, чем может парень)… Женщины имеют большую свободу от своего генотипа, имеют большую возможность, чем мужчины, изменять себя.
Гены дарят нам наши возможности, и гены же наши возможности ограничивают.
Из пшеничного зерна вырастает гордый пшеничный колос, а из саженца яблони – красивая ветвистая яблоня. Нашу суть, наши склонности и возможность реализовать себя дают нам наши гены. С другой стороны, из пшеничного зерна вырастет только колос пшеницы, из саженца яблони вырастает только яблоня, а сколько лягушке ни надуваться, в быка она не раздуется. У нее даже лопнуть от натуги сил не хватит.
Человек – часть природы, и все вышесказанное справедливо и для него. Гены предопределяют границы наших возможностей, в том числе наши возможности менять себя, стремиться к росту и развитию. Если вам с генами повезло, вы сумели воспринять влияния ваших родителей и педагогов, выросли развитым, порядочным и талантливым человеком. Спасибо родителям! Если вам с генами повезло меньше, и вы (вдруг!) родились дауном, то в самом хорошем окружении из вас вырастет только воспитанный даун. В этом смысле наши гены – это наша судьба, и свои гены, свои возможности расти и меняться – мы напрямую изменить не можем.
Много ли в нас генетически заложенного – вопрос очень спорный (взаимодействие наследственности и среды изучает психогенетика). Скорее правда, что чем более человек удаляется от животного мира, тем меньше в нем врожденного и больше приобретенного. Пока нужно признать, что в большинстве из нас врожденного очень много. В среднем, по мнению генетиков, гены определяют поведение человека на 40%.
Если вы любите своего ребенка и учитесь быть хорошим родителем и воспитателем, гарантированы ли вам успехи? Нет. Каким бы талантливым педагогом вы ни были, у вас может родиться «кислый» или трудный ребенок, с которым реально мало что можно сделать. Если вы сделаете лучшее из возможного, то сможете уменьшить неприятности людям от этого ребенка, но успеете ли вы из него вырастить достойного человека за два десятка лет его воспитания? Так получается не всегда. Человек появляется на свет со своим характером, и он бывает очень разным. Некоторые дети рождаются сразу «домашними» — характер легкий, податливый, со взрослыми дружат и их слушают. У других характер самого начала трудный: им тяжело самим, тяжело с ними.
Что это значит? Только то, что стоит приглядываться к тому или той, с кем вы собираетесь создавать семью. Обращать внимание на родственников, учитывая не только то, что с ними придется встречаться, а и то, что тот или иной характер может оказаться и у вашего ребенка. Хороших вам родственников!
Генетика бывает хорошей или плохой, и это зависит в том числе от нашего образа жизни. В благоприятных условиях и хорошем воспитательном процессе, возможная негативная предрасположенность может не реализоваться, или скорректироваться, “прикрыться” влиянием соседних разбуженных генов, а позитивная предрасположенность, иногда скрытая – проявиться. Иногда человек (ребёнок) просто не знает своих возможностей, и категорично “ставить крест”, говорить, что “из этого гадкого утёнка лебедя не вырастет” – опасно.
Другая опасность, другой риск – тратить время и силы на человека, из которого путного все-таки ничего выйти не может. Говорят, что каждый может стать гением, и теоретически это так. Однако практически одному для этого достаточно тридцать лет, а другому нужно лет триста, и вкладываться в таких проблемных людей – нерентабельно. Спортивные тренеры утверждают, что именно врожденный талант, а не методика тренировок, – самый важный фактор формирования будущего чемпиона. То, что человеку дается от природы – база, на которой можно строить все остальное.
Если девушка родилась шатенкой с зелеными глазами и “предрасположенностью” к полноте, то можно, конечно, покрасить волосы и надеть цветные линзы: девушка все равно останется зеленоглазой шатенкой. А вот воплотится ли ее “предрасположенность” в пятьдесятбольшие размеры, носимые всеми ее родственницами, во многом зависит от нее самой. И уж тем более от нее самой зависит, будет ли она к сорока годам, сидя в этом пятьдесятбольшом размере, ругать государство и не сложившуюся жизнь (как это делают все её же родственницы) или найдет себе много других интересных занятий.
Может ли человек менять, когда-то преодолевать, а когда-то улучшить свою генетику? Ответ на этот вопрос не может быть общим, поскольку и это задано индивидуально генетически. В целом правильно говорить, что развитие ребенка определяют склонности плюс воспитание. Однако у одного ребенка с рождения 90% определяется его склонностями и только 10% можно добавить воспитанием (неподатливый ребенок), у другого, податливого – он почти как чистый лист, 10% склонностей и на 90% что вложите воспитанием, то и будет. И то, и другое соотношение – врожденная характеристика ребенка.
Какое соотношение у вас или у вашего ребенка? Понять это можно только опытным путем, начав с ребенком (или с собой) заниматься. Начинайте! Гены задают возможности, от нас зависит, насколько мы эти возможности реализуем. Если у вас хорошая генетика, вы можете сделать ее еще лучшей и передать своим детям как самый дорогой подарок. Наша ДНК запоминает, какое у нас было детство, есть наблюдения, что генетически передаются привычки, навыки, склонности и даже манеры. Если вы выработали у себя воспитанность, красивые манеры, поставили хороший голос, приучили себя к распорядку дня и ответственности, то есть неплохая вероятность, что рано или поздно это войдет в генотип вашей фамилии.
Гены определяют наши задатки, наши возможности и склонности, но не нашу судьбу. Гены определяют стартовую площадку для деятельности – у кого-то она лучше, у кого-то труднее. Но что будет на базе этой площадки сделано – это уже забота не генов, а людей: самого человека и тех, кто с ним рядом.
Думая о генетике, важно помнить, что человек живет и строит себя не в одиночестве. Если полагаться только на собственную генетику, можно остаться дикарем. Нас окружает культура, создававшаяся многими поколениями много сотен лет, вобравшая лучшее из генетики каждого. Нас учат, и мы можем учиться. То, что трудно в себе развить самостоятельно, может помочь развить учитель или тренер: возможно, у него именно к этому генетически заданный потрясающий талант. Люди могут помогать друг другу. Что один не сделает, сделаем вместе!
«Существует ряд наследственных заболеваний, одним из симптомов которых является умственная отсталость: как правило, это нарушения числа или структуры хромосом. Классический пример — синдром Дауна; менее известные — например, синдром Вильямса (синдром „лица эльфа“), синдром Ангельмана и так далее. Но бывают и мутации отдельных генов. Всего генов, в которых мутации могут приводить к умственной отсталости той или иной степени, по последним данным, более тысячи.
Кроме этого, есть ряд нарушений, которые имеют полигенную природу, — их еще называют мультифакториальными. Их появление и развитие обусловлено не только наследственностью, но и влиянием окружающей среды, причем если мы говорим о наследственных факторах, то это всегда результат действия не одного, а множества генов. Сегодня считается, что к таким заболеваниям относятся шизофрения, расстройства аутического спектра, расстройства депрессивного спектра (клиническая депрессия, послеродовая депрессия), биполярное аффективное расстройство (то, что раньше было известно как маниакально-депрессивный психоз), маниакальный синдром и др.
Если не говорить об очевидных хромосомных заболеваниях (скажем, синдром Дауна — трисомия 21-й хромосомы, синдром Вильямса — микроделеция участка хромосомы 7q11.23, и так далее), то существует, например, синдром ломкой Х-хромосомы, при котором происходит мутация конкретного гена в Х-хромосоме, что вызывает помимо всего прочего умственную отсталость. Вообще, с мутациями в Х-хромосоме связано довольно значительное количество таких патологий, и они неплохо изучены.
Относительно влияния наследственных факторов на IQ, насколько мне известно, пока нет точного и однозначного ответа (кроме ситуаций, когда одним из симптомов наследственного заболевания является снижение интеллекта). В целом генетически детерминируется только так называемая „норма реакции“, то есть диапазон вариативности признака, а то, как это реализуется в пределах диапазона, уже связано с условиями среды (воспитанием, тренировками, стрессом, условиями жизни). Считается, что интеллект — это как раз классический пример признака, для которого генетически детерминирован довольно широкий диапазон, а не конкретное значение IQ. Но при этом есть ряд полиморфных аллелей, для которых, например, показана ассоциация с сохранением уровня когнитивных способностей в условиях повышенных физических и психических нагрузок. По разным данным, влияние наследственных факторов на память составляет от 35% до 70%, а на IQ и внимание — от 30% до 85%».
Психогенетика занимается исследованием того, как наследственные факторы влияют на психические качества живого существа. Например, доказано влияние индивидуальных генетических особенностей на темперамент, агрессивность, показатели интроверсии-экстраверсии, поиск новизны, избегание вреда (ущерба), зависимость от вознаграждения (поощрения), IQ, память, внимание, скорость реакции, быстроту дизъюнктивного реагирования (реагирования на ситуации со взаимоисключающим выбором) и другие качества. Но в целом, в отличие от большинства морфологических и биохимических признаков, психические характеристики меньше зависят от генетики. Чем сложнее поведенческая деятельность человека, тем больше роль окружающей среды и меньше — генома. То есть для простых двигательных навыков наследуемость выше, чем для сложных; для показателей интеллекта — выше, чем для свойств личности, и тому подобное. В среднем (разброс данных, к сожалению, довольно большой: это связано с различиями методик, объемов выборок, недостаточным учетом популяционных особенностей) наследуемость психических характеристик редко превышает 50–70%. Для сравнения: вклад генетики в тип конституции достигает 98%.
Почему так? В частности, потому что в формировании этих признаков (сложных и комплексных) участвует огромное количество генов, а чем больше генов вовлечено в какой-либо процесс, тем ниже вклад каждого в отдельности. Например, если у нас есть десять разновидностей рецепторов, восприимчивых к одному нейромедиатору, и каждый кодируется отдельным геном, то снижение экспрессии или даже нокаут по одному из генов не выключат всю систему в целом.
Иконки: 1) A.L. Hu, 2) Aenne Brielmann, 3) Michael Thompson, 4) Alex Auda Samora — from the Noun Project.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию
Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов
Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.
egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений
Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию
Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.
См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005.
Александр Марков
Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.
Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.
egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».
Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.
Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.
Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.
Гены, мозг и социальное поведение связаны сложными отношениями. Эти отношения действуют на трех временных масштабах: (i) на уровне физиологии — влияя на активность мозга (сплошные линии), (ii) на уровне развития организма — через экспрессию генов в мозге и эпигенетические модификации (линия из точек), (iii) на эволюционном уровне — через естественный отбор (пунктирная линия). Направление влияния: розовые стрелки — от социальных отношений к изменению функций мозга и поведения, стрелки цвета морской волны — от генов к социальному поведению. Изображенные животные (сверху по часовой стрелке): зебровая амадина (T. guttata), цихлида (A. burtoni), медоносная пчела (A. mellifera), дрозофила (D. melanogaster), прерийная полёвка (M. ochrogaster), крыса (R. norvegicus), огненный муравей (S. invicta). Курсивом на фотографиях даны названия генов, связанных с тем или иным видом социального взаимодействия. Изображение из обсуждаемой статьи Robinson et al.
Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.
Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.
Нейрохимия личных отношений Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.
Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).
Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.
Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).
Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.
У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.
Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило. Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.
Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.
Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.
У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином.
Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.
Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.
Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.
У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).
У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.
Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.
У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).
Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.
Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.
Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).
Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.
В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.
Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».
Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.
Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).
По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?
Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.
Политологам пора учить биологию Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.
Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов.
Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.
«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.
Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.
Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.
Список литературы
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–
РЕФЕРАТ
на тему: Гены их роль и значение для жизни
Содержание
Введение
Глава 1. Генетика и эволюция
Глава 2. Роль генов в определении и лечении различных заболеваний
.1 Гены и психические заболевания
.2 Психические расстройства в онтогенезе
Глава 3.Генетика и практика
.1 Пренатальная диагностики наследственных заболеваний
Заключение
Список литературы
Введение
«Как бы далеко ни продвинулся человек
по дороге знания, как бы высоко ни парил
его разум, никогда, я думаю, он не перестанет
удивляться великому таинству наследственности:
возникновению сложной индивидуальности,
именуемой организмом, из одной-единственной
оплодотворенной клетки, несущей эстафету жизни…»
Беляев Д.К.
Ген – это наследственный фактор, функционально неделимая единица генетического материала; участок молекулы ДНК (у некоторых вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или ри-босомальной РНК или взаимодействующий с регуляторным белком. Совокупность генов данной клетки или организма составляет его генотип. Еще в 1865 году Г.Менделем было постулировано существование дискретных наследств, факторов в половых клетках, а в 1909 B. Иогансен назвал их геном. В дальнейшем Т. X. Морган и его школа разработали теорию генов. [1].
Первые попытки экспериментального решения проблем, связанных с передачей признаков из поколения в поколение, предпринимались уже вXVIII веке. Учёные, скрещивая между собой, различные особи и получая помесное потомство, стремились узнать, как наследуются родительские свойства.
В1665г. английским естествоиспытателем Робертом Гуком впервые была обнаружена клетка. А уже в1674г. Левенгук, благодаря созданию микроскопа, открыл существование живых клеток.
год считается датой рождения генетики. С этого момента начинаются широкие исследования, в ходе которых были сформулированы представления о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов наследственной изменчивости и другие. Новый этап развития генетики связан с усовершенствованием техники научных исследований. Сложные современные приборы позволили установить строение нуклеиновых кислот, вскрыть их значение в явлениях наследственности и расшифровать генетический код, выявить этапы биосинтеза белка. Актуальность данной темы обусловлена тем, что без учета достижений генетики в настоящее время немыслима полноценная деятельность человека во многих сферах науки и производства: в биологии, медицине, сельском хозяйстве. Знание генетики помогает понять возникновение и развитие жизни на Земле, открывает материальную основу эволюционных преобразований. Обнаружение связей между строением генов и белков привело к созданию молекулярной генетики. Интенсивно развивается иммуногенетика, изучающая генетические основы иммунных реакций организма. Выявлена генетическая основа многих заболеваний человека или предрасположенности к ним. Такие сведения помогают специалистам в области медицинской генетики установить точную причину заболевания и разработать меры профилактики и лечения людей. [6].
В данной работе мы рассмотрим насколько значима роль гена в жизни, на примере нескольких видов заболеваний, а именно затронем психические заболевания, и как возможности решения, приведем выработанную на основе генетики и уже ставшую «самостоятельной» пренатальную диагностику наследственных заболеваний плода.
Глава 1. Генетика и эволюция
Современная генетика рассматривает наследственность как коренное, неотделимое от понятия жизни свойство всех организмов повторять в ряду последовательных поколений сходные типы биосинтеза и обмена веществ в целом. Это обеспечивает структурную и функциональную преемственность живых существ – от их внутриклеточного аппарата до морфо-физиологической организации на всех стадиях индивидуального развития. Наследственная изменчивость, то есть постоянно возникающие изменения генотипической основы организмов, и наследственность поставляют материал, на основе которого естественный отбор создаёт многообразие форм жизни и обеспечивает поступательный ход эволюции. Одно из коренных положений современной генетики состоит в том, что наследственная информация о развитии и свойствах организмов содержится главным образом в молекулярных структурах хромосом, заключённых в ядрах всех клеток организма и передаваемых от родителей потомкам. Биохимические процессы, лежащие в основе индивидуального развития организма, осуществляются на базе, поступающей из ядра информации в цитоплазматических структурах клетки. Некоторые клеточные органеллы, в частности хлоропласты и митохондрии, обладают генетической автономией, то есть содержат наследственный материал.
Открытие Менделем закономерностей расщепления показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии. Это устранило одно из самых серьёзных возражений против дарвиновской теории эволюции, высказанное английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникнуть у какой-либо особи, в последующих поколениях будет уменьшаться и постепенно приближаться к нулю. [1].
Генетика обосновала положение, что генотип определяет норму реакции организма на среду. В пределах этой нормы условия среды могут влиять на индивидуальное развитие организмов, меняя их морфологические и физиологические свойства, то есть, вызывая модификации. Однако эти условия не вызывают адекватных (то есть соответствующих среде) изменений генотипа, и поэтому модификации не наследуются, хотя сама возможность их возникновения под влиянием условий среды определена генотипом. Именно в этом смысле генетика отрицательно решила вопрос о наследовании признаков, приобретённых в течение индивидуального развития, что имело огромное значение как для утверждения дарвиновской теории эволюции, так и для селекции.
Генетические исследования показали также роль мутационного процесса, изоляции миграций, гибридизации, а также генетико-автоматических процессов в эволюционной дивергенции популяций и механизмах видообразования.
Доказано, что один ген может влиять не на один, а на многие признаки организма (плейотропия), вместе с тем развитие каждого признака зависит не от одного, а от многих генов (полимерия). Доказано также, что функции гена и его влияние на фенотип зависят от физического положения гена в генетической системе (эффект положения), от совокупности остальных генов (генотипической среды) и от внешних условий. Фенотипическое выражение гена – экспрессивность, так же как и его проявление – пенетрантность то есть наличие или отсутствие контролируемого данным геном признака, могут варьировать в зависимости как от внешних условий, так и от генотипа. Под влиянием различных внешних воздействий гены могут изменяться – мутировать. К независимому мутированию способны также элементарные единицы, входящие в состав гена. Все эти факты свидетельствуют о сложности материальной структуры гена, эволюционировавшей в процессе развития жизни на Земле, после того как были вскрыты молекулярные основы организации наследственных структур и процессов, которые лежат в основе передачи наследственной информации в клетке (и в организме) и в поколениях клеток (и организмов), выяснилось, что гены контролируют процессы синтеза белков в клетках и что генные мутации (изменения химической структуры генов) ведут к изменению химической структуры белков (что в ряде случаев сводится к замене одной аминокислоты другой). Материальным носителем генетической информации служит гигантский полимер – дезоксирибонуклеиновая кислота (ДНК), входящая в качестве важнейшего компонента в структуру хромосом всех организмов, за исключением некоторых вирусов, содержащих puбонуклеuновую кислоту (РНК). [6].
Для каждой стадии развития организма характерна строго определённая картина синтетической активности хромосом: некоторые участки их находятся в состоянии сильной активности и синтезируют РНК, тогда как другие участки на этих стадиях развития функционально не активны, но становятся активными на других стадиях. Оказалось, что в ряде случаев регуляторами функциональной активности генетического аппарата являются гормоны. Проблема генетических аспектов онтогенеза – одна из наиболее актуальных в современной биологии.
Глава 2. Роль генов в определении и лечении различных заболеваний
Все большее внимание привлекает и проблема разнообразия генома человека, то есть генетического полиморфизма. Задачи его носят преимущественно прикладной характер и касаются выяснения генетических (генных) основ индивидуальной чувствительности или устойчивости человека к различным неблагоприятным экзогенным факторам (экогенетика), а также к лекарственным препаратам (фармакогенетика). В ходе таких исследований и возникло представление о существовании ” генов предрасположенности”. Приведем высказывание Ф.Коллинса, директора Международной программы “Геном человека”: “Каждый из нас генетически несовершенен. По мере разработки все новых и новых генетических тестов у каждого человека можно обнаружить мутацию, предрасполагающую к тому или иному заболеванию”. Таким образом, “гены предрасположенности” – это по сути мутантные аллели, которые совместимы с рождением и жизнью в постнатальном периоде, но при определенных неблагоприятных условиях могут способствовать развитию того или иного заболевания. В зависимости от природы провоцирующего фактора их относят к ” генам внешней среды” либо к генам-триггерам, запускающим патологический процесс при сочетании каких-то неблагоприятных факторов. В отличие от моногенных болезней, для возникновения которых достаточно наличие мутаций в структурном гене, эти заболевания принадлежат к наиболее многочисленной группе мультифакториальных болезней, в появлении которых повинны как генетические, так и экзогенные факторы. [4].
В настоящее время известно уже более 200 “генов внешней среды”. Они выявлены в каждой группе ферментов, участвующих в детоксикации, у них обнаружены мутантные изоформы, функция которых может быть нарушена по сравнению с нормальными аллелями. Для многих из них выявлены генетические полиморфизмы, влияющие на функциональную активность их аллелей. Генетические исследования таких генов говорят о значительных межпопуляционных и межэтнических различиях их аллельного полиморфизма, что отражает своеобразие условий проживания, питания и образа жизни населения в различных регионах мира. В дальнейшем выяснилось, что эти функционально неполноценные аллели значительно чаще встречаются у лиц с различными заболеваниями, в этиологии которых важную роль играют неблагоприятные экзогенные факторы. Гены, имеющие такие аллели, и можно рассматривать как “гены предрасположенности” к тем или иным заболеваниям. Так, установлено, что неполноценный (нулевой) аллель глутатион-S-трансферазы, имеющий протяженную делецию, представлен в гомозиготном состоянии почти у 40% населения России. Этот генотип особенно характерен для больных раком легких, хроническим обструктивным бронхитом и раком мочевого пузыря. У лиц с таким генотипом на фоне алкоголизма чаще развивается цирроз печени . Имеются многочисленные сведения о высокой предрасположенности индивидов, гомозиготных по “ослабленному” аллелю гена GSTPi, к различным опухолям, в том числе к раку кожи и, как недавно установлено, даже к болезни Паркинсона. Это тяжелое нейродегенеративное заболевание, обусловленное избирательной гибелью допаминэргических нейронов в подкорковых отделах мозга, особенно часто наблюдается у людей после хронического воздействия пестицидов. В настоящее время уже имеются достаточно обоснованные данные о том, что по крайней мере некоторые “гены внешней среды” непосредственно участвуют в возникновении ряда онкологических ( рак молочной железы , рак легких , рак мочевого пузыря и др.) и неонкологических ( хронический обструктивный бронхит, эмфизема легких, эндометриоз, болезнь Паркинсона ) заболеваний. Не случайно поэтому популяционный скрининг аллельных вариантов генов GSTM1 и NAT-2 уже сегодня стал предметом широкого обсуждения.
Генотипирование по AРОЕ может сыграть роль в расшифровке нейробиологических механизмов болезни Альцгеймера, а также использоваться как критерий формирования групп больных для клинических исследований. Вместе с тем, пока еще нет достаточных оснований рекомендовать этот метод для практической медицины. Во-первых, не проведены эпидемиологические исследования в отдельных возрастных группах. Если генотип AРОЕ4/4 обнаружен у 25-летнего больного с деменцией, вероятность у него болезни Альцгеймера все равно крайне мала. Во-вторых, болезнью Альцгеймера может страдать человек с любым генотипом AРОЕ, то есть в каждом отдельном случае данные генотипирования не могут ни подтвердить, ни опровергнуть этот диагноз. Даже если генотип свидетельствует о высокой вероятности болезни Альцгеимера, это не исключает наличия другой формы деменции, поддающейся лечению. [5].
Поскольку основная задача дифференциальной диагностики – выявление излечимых форм деменции, а генотипирование по AРОЕ не решает этой задачи, то считают, что нет смысла его широкого использования. Однако со временем результаты генотипирования наряду с другими показателями, например содержанием бета-амилоидного белка или тау-белка в СМЖ, могут составить достаточно чувствительней и специфичный диагностический комплекс.
Обсуждается также прогностическое использование генотипирования по АРОЕ в бессимптомных случаях.
Поскольку профилактики болезни Альцгеимера не существует, многие врачи считают такое тестирование неэтичным. Более того, генотипирование не позволяет прогнозировать такой важный признак, как возраст начала болезни. Лица с генотипом AРОЕ4/Е4 составляют 2% всего населения, причем болезнь обычно начинается в возрасте 50 лет и старше.
.1 Гены и психические заболевания
Поведенческая генетика, также психогенетика изучает влияния генетических свойств организма на поведение, а также взаимодействия генетических и средовых факторов в той мере, в какой они воздействуют на поведение человека, то есть исследование широкоизвестного противоречия: что более влияет – природа или воспитание. Исследование взаимосвязей поведения и генетических предпосылок, или наследственности.
Разновидностью отклоняющегося поведения, являются психические заболевания. Исследования, выполненные разными методами, показали, что наследственная предрасположенность к психическим болезням может быть различной: контролироваться одним локусом (быть моногенной), небольшим числом локусов (олигогенный котроль) или множеством локусов (полигенный контроль). В последнем случае наследственная основа представляется множеством локусов с аддитивным (суммирующем) эффектом аллелей. Каждый из этих генов в отдельности может не проявлять самостоятельного патологического действия, но при их накоплении в определенной комбинации в генотипах они приводят к развитию болезни.
Существует модель «главного гена», согласно которой развитие болезни определяется действием гена с сильным эффектом, а ее выраженность – множеством генов со слабым эффектом (генов-модификаторов, или полигенов) В настоящее время психические болезни относятся к мультифакториальным, или болезням с наследственным предрасположениями.
Для мультифакториальных характерен широкий клинический полиморфизм – разнообразие в проявлении заболевания у разных лиц. Одно и то же заболевание может быть вызвано различными генетическими причинами.
Это явление носит название генетическая гетерогенность.
Для мультифакториальных болезней характерно семейное накопление – частота болезни у родственников выше, чем в среднем в популяции. В родословных с психическими болезнями повышена частота индивидов с пограничными психическими состояниями и другими отклонениями в поведении. [4].
Для того чтобы выяснить, какие гены участвуют в формировании мультифакториальных (в том числе и психических) заболеваний, используют биохимические, молекулярно-генетические и методы и данные генеалогического анализа. Они позволяют определить, какие гены формируют подверженность заболеванию, какие биохимические реакции протекают под их контролем, как биохимические продукты оказывают влияние на функции организма, как это проявляется в поведении. Это методология построена на концепции «кандидатных генов». Кандидатными называют гены, которые контролируют ферменты, участвующие в формировании структур организма, нарушение которых приводит к заболеванию. Используются также подход, получивший название «геномный поиск». В этом случае сравнивают наличие вариантов ДНК в группе больных и группе здоровых людей.
Одним из средовых факторов риска развития психических нервных болезней являются вирусы. При исследовании спинномозговой жидкости психиатрических и неврологических пациентов на содержание вирусных антител и интерферона были обнаружены коплемент-зависимые нейтрализующие антитела к вирусу герпеса (HSV1) у52% пациентов со старческим слабоумием (52%), 51% больных энцефалитом, 44% больных алкоголизмом, у 37% пациентов с повреждениями периферических нервов, при множественном склерозе (42%), шизофрении (32%), менингите (35%). Интерферон в спинномозговой жидкости был найден у 40% психиатрических и 35% неврологических болезней. [5].
Гипотеза о происхождении психических болезней.
Для объяснения высокой частоты психических болезней в популяциях была выдвинута эволюционно-генетическая гипотеза. Согласно этой гипотезе психические болезни представляют собой животное наследие человека, а их высокая распространенность объясняется тем, что гены, их формирующие, в невысоких дозах, по-видимому, полезны и благодаря этому сохраняются в популяции.
Если по каким-то причинам резко снижается порог реагирования, то реакции могут возникать не только в ответ на специфические раздражители, но и на нейтральные. В таких случаях они становятся неадекватными ситуации и приводят к аномалиям поведения.
Психические болезни человека эволюционно произошли от защитных реакций животных: эпилепсия от эпилептиформной реакции, аффективные психозы от аффективной реакции, шизофрения от кататонической реакции. Из-за того, что у человека резко снизился порог реагирования, эти реакции утратили свою адаптивную роль и стали патогенными.
Психоз рассматривают как плату за сохранение в популяции определенных генов, которые в других комбинациях дают их носителям какие-то биологические преимущества. Например, получена информация о том, что у больных шизофренией женщин высок процент музыкально и художественно одаренных детей.
Известно, немало примеров того, что индивиды, одаренные специальными творческими способностями, не только сами имеют психические отклонения, но также и повышенный процент родственников с психическими аномалиями.
Генетическая природа таких тяжелых психических заболеваний, как шизофрения, биполярный психоз, аутизм, уже не вызывает сомнений ни у психиатров, ни у самих исследователей, работающих в области биологической психиатрии. За последние годы ученые собрали большой и убедительный материал на базе исследования семей, в которых неоднократно встречаются случаи заболевания. Были исследованы пары монозиготных (однояйцовых) и дизиготных (двуяйцовых) близнецов. Работы специалистов показали, что вклад генетических факторов в развитие заболевания достаточно высок (60-80%) и явно превышает вклад средовых факторов. Частота возникновения аутизма и заболеваний аутистического спектра в популяции составляет 0,3-0,6%, а уровень заболеваемости у братьев и сестер больных детей значительно выше (2-8%). Приведу еще цифры: конкордантность развития заболевания у близнецов составляет в случае заболеваний аутистического спектра (синдром Аспергера, дезинтегративные расстройства, синдром Ретта) 90% у монозиготных близнецов и 0-10% у дизиготных пар. Риск заболевания биполярным расстройством в популяции равен 0,3-1,5%, а среди родственников больных он гораздо выше -более 20%. Шизофрения может возникнуть в 0,6-2% случаев у людей, не имеющих наследственной отягощенности по психическим заболеваниям. У родственников первой степени родства величина такого риска возрастает уже до 9-13%. Самый высокий риск шизофрении мы отмечаем у индивида из близнецовой пары, в которой один из близнецов уже имеет это заболевание (28-48% по разным данным), и у ребенка, родившегося от двух пораженных родителей (36-46%). [5].
.2 Психические расстройства в онтогенезе
Некоторые психические расстройства начинаются в детстве, другие развиваются в первые годы жизни. К расстройствам онтогенеза относят умственную отсталость, когда IQ ребенка не превышает 70 баллов. Известно много выдающихся людей, которые в детстве страдали расстройствами онтогенеза, в частности, в обучении, например, А. Эйнштейн, В. Вильсон, Н. Рокфеллер, В. Черчилль, Дж. Кеннеди.
Рассмотрим некоторые расстройства онтогенетического развития:
Аутизм. Для аутизма характерно отсутствие осознанности о существовании и чувствах окружающих людей. У людей с данным заболеванием нарушено вербальное и невербальное общение, отсутствует воображение. Речь людей с аутизмом лишена смысла, часто идет повторение слов и предложений. Больные дети не отзываются на свое имя, не любят, когда их ласкают и обнимают, не выражают никаких эмоций на лице и не контактирует глазами, плохо спят, у них развивается чувство страха. Около 66 – 75% людей с аутизмом имеют IQ до 70 баллов.
Аутизм распространен в популяции с частотой 2 -5 на 10000 тысяч человек, причем среди мужчин он встречается в 3 – 4 раза чаще, чем среди мужчин. Различия касаются и возрастных групп: среди детей 7 – 9 лет аутизм встречается с частотой 12,6 на 10000 человек, среди взрослых 18 – 20 лет – с частотой 0,4 на 10000, что, по-видимому, объясняется различными диагностическими критериями и улучшением состояния у взрослых. В настоящее время в мире идет тенденция к росту заболеваемости аутизмом.
Заикание. Заикание характеризуется остановками речевого потока, которые выражаются в повторении звуков, слогов и слов.
Степень заикания постоянно варьирует – в спокойном состоянии человек говорит лучше, чем в тревожном. Заикание встречается у 1% взрослых. У детей в возрасте до 5 лет частота заикания 5%, у школьников – с частотой 1,2%.
Поиск генетических причин заикания проводился с помощью генеалогического и близнецового методов. Анализ родословных показал, что некоторых семьях заикание наблюдается в нескольких поколениях, у мальчиков в 4 раза чаще, чем у девочек.
Генетическая подверженность заиканию представляет собой полигенную систему с пороговым эффектом, неодинаковым у представителей разного пола.
Синдром Туретта. В 1885 году французский невропатолог Жиль де ля Туретт впервые диагностировал женщину с заболеванием, впоследствии получившим название синдром Туретта. Синдром Туретта проявляется обычно до 18-летнего возраста и характеризуется непроизвольными, быстрыми, повторяющимися, неритмическими и стереотипными множественными двигательными и вокальными тиками. Двигательные тики обычно затрагивают область головы других частей тела (туловище, верхние и нижние конечности).
Популяционная частота синдрома Туретта составляет 5 больных на 10000 человек, однако для разных популяций данные варьируют. Риск заболеть Синдромом Туретта для родственников первой степени родства больного по разным данным составляет примерно от 2% до 51%, причем более подверженными, как уже было отмечено, является мужской пол, для представителей которого риск в 5 раз выше, чем для женщин. [2].
Дислексия. Дислексия определяется как специфическое и значительное ухудшение способности к чтению, которую нельзя объяснить снижением интеллекта, возможностей овладеть чтением, мотивацией или сенсорными повреждениями. Дислексия является одной из наиболее частых аномалий, диагностируемых в детстве, и представляет огромную образовательную и социальную проблему. Несмотря на то что дислексия считается аномалией, дислексики часто имеют повышенные показатели умственного развития. Среди детей, страдающих дислексией, мальчики составляют около 80%.
Синдром дефицита внимания и гиперактивности. Гиперкинетический синдром проявляется в повышенной склонности отвлекаться. Гиперактивные дети не могут усидеть на одном месте и сконцентрироваться на каком-либо занятии. Они легко переключаются с одного дела на другое, ничего не довдя до конца.
Гиперкинетический сидром встречается у 3 – 9% детей, причем среди мальчиков значительно чаще, чем среди девочек. Гиперкинетические дети часто происходят из семей с какими-либо психическими нарушениями. Примерно у 40% из них один или оба родителя страдают психическим расстройством. ген психический болезнь аутизм
Во все времена поднимался философский вопрос о свободе воли человека. Кто-то из мыслителей считал, что люди принимают решения самостоятельно; другие утверждали, что всё в мире предопределено, а воля человека — это иллюзия. Современные исследования мозга человека и его поведения вернули старому спору актуальность
Мозг, клетка, ген
Иногда мы становимся заложниками своего мозга, о чём нам часто напоминают нейробиологи: например, пациент с обсессивно-компульсивным расстройством (ОКР) страдает от непроходящей тяги к мытью рук из-за повышенной активности хвостатого ядра. Этот отдел мозга запускает сигналы в орбитофронтальную кору и заставляет человека совершать бессмысленные, на первый взгляд, действия. Эти действия не имеют смысла только для внешнего наблюдателя; пациенту с ОКР они необходимы, чтобы справиться с тревогой, которая изводит его. Сейчас ОКР успешно лечится антидепрессантами, в частности, кломипрамином.
Психологи, исследующие когнитивные ошибки и влияние внешних факторов на выбор человека, подливают масла в огонь. Оказывается, музыка, звучащая в супермаркете, влияет на то, какое вино мы купим. Сталкиваясь с такими особенностями нашего мозга, мы можем задать себе вопрос: а является ли человек хозяином себе? Что такое наша жизнь, если не результат игры в кости, которой забавляются разные отделы мозга? Получается, что от деятельности одной или нескольких клеток может зависеть принятие важных для нашей жизни решений. Возможно, вопрос стоит переформулировать, ведь структура и активность клеток человеческого мозга зависят от маленьких, но очень важных составляющих — генов, участвующих в формировании и функционировании мозга.
Как известно, гены представляют собой последовательность нуклеотидов — дезоксирибонуклеиновую кислоту (ДНК). ДНК кодирует длинную нить белка исходя из правила три нуклеотида — одна аминокислота.
Замена одного нуклеотида другим называется однонуклеотидным полиморфизмом (Single Nucleotide Polymorphism, SNP, снип) и может привести к изменению белковой последовательности. Например, если в кодоне треонина изменить первый нуклеотид, то вместо него в белковую молекулу встанет аланин. Как следствие, изменится функция белка: если замененная аминокислота находилась в активном центре фермента, то он перестанет выполнять свою функцию. Это может привести к гибели клетки и всего организма. А что произойдёт, если меняется не фермент, а рецептор к нейромедиатору в головном мозге? В этом случае замена одного нуклеотида может привести к разнице в реакции между нейромедиатором и рецептором. Этого так легко не увидеть, но мы заметим, как это повлияет на личность и отразится на поведении человека.
Рецепторы зависимости
Одним из главных медиаторов в центральной нервной системе является дофамин. Дофаминовые пути регулируют работу мышц (снижают тонус и способствуют двигательной активности), входя в экстрапирамидные пути. При нарушенной работе дофамина в центральной нервной системе развивается болезнь Паркинсона.
Нервные структуры, «работающие» на дофамине, отвечают за формирование желаний, целенаправленную деятельность и эмоциональное восприятие, т.е. формируют поведение и личность человека. Одна из теорий возникновения шизофрении называется дофаминовой и напрямую связывает нарушение метаболизма этого вещества в нервной системе с симптомами заболевания. При шизофрении пациенты часто бывают пассивными и проявляют мало эмоций, что может быть вызвано дефицитом дофамина в некоторых отделах мозга.
Сами рецепторы к дофамину* делятся на пять типов: от D1 до D5. Кодирующие их гены называются соответственно — DRD1, DRD2 и так далее. Исследователи объединяют рецепторы 1-гои 5-го типа в одну группу, а прочие рецепторы — в другую. Это связано с тем, что при активации рецепторов первой группы в клетке повышается концентрация циклического аденозинмонофосфата (цАМФ), который передаёт сигнал с поверхности клетки и активирует ферментные системы.
При взаимодействии рецепторов второй группы с дофамином концентрация цАМФ снижается с соответствующими последствиями. Рецепторы 1-го и 2-го типа являются наиболее распространенными в нервной системе, и их полиморфизм может влиять на наше поведение за счёт их многочисленности.
Достаточно шансов повлиять на поведение человека имеют рецепторы к дофамину 3-го и 4-го типов. У них это может получиться не из-за количества, а из-за специфичности расположения. Эти рецепторы находятся на нейронах, расположенных в системе вознаграждения, миндалине, гиппокампе и коре — в тех отделах, которые напрямую влияют на наше поведение. (Схематично система вознаграждения показана на рис. 1.)
* — За исследование этих рецепторов, относящихся к классу G-белоксопряженных, в 2012 году вручена Нобелевская премия по химии: «Нобелевская премия по химии (2012): за рецепторы наших первого, третьего и четвертого чувств» — Ред.
По мере накопления знаний о том, как работает геном, многие представления о человеке, действительно, должны быть пересмотрены. Легко преувеличить значение генетической основы поведения в нашей жизни. Гены не могут определять поведение непосредственно. Поведение связано с деятельностью мозга, и самое большое, на что способны гены – повлиять на строение мозга, его размер, на чувствительность к гормонам и сигнальным молекулам.
Среди сложных поведенческих схем, обусловленных генами, есть те, которые предусматривают возможность различных вариантов действий. Эти схемы мы называем “свободой воли или свободой выбора. Именно наличие свободы выбора вместе со знаниями о возможных последствиях определяет то, что называется “ответственностью человека”. Так что, существование генов, способных влиять на поведение, не отменяет ответственности ни в правовом смысле, ни в повседневной жизни.
Не стоит рассчитывать, что для каждого вида поведения будет найден конкретный ген. При формировании поведенческой реакции человека играет роль совокупность генов и их взаимодействие. Ну, и конечно, очень важна оценка разнообразных внешних влияний, как биологических, так и социальных, психологических.
Генетики при изучении поведения обнаружили парадокс. Во многих исследованиях определялась высокая степень схожести между родными и усыновленными братьями и сестрами. Результат является настолько надежным, что в сфере генетики поведения можно сформулировать первый закон – все поведенческие черты частично наследственны.
LOGO
Гены и поведение
Плешкунов Александр,
10 класс,
МОУ лицей № 7 г.Томска
LOGO
Содержание
1
Актуальность и проблема исследования
2
Гипотеза
3
Цели и задачи
4
Результаты, их значимость
http://www.themegallery.com
LOGO
Взаимосвязь генов и поведения
Существует связь: гены >
поведение, т.е. гены
влияют на поведение. Но
есть и обратная связь:
поведение > гены, т.е.
поведение влияет на гены.
Необходимо помнить:
каждый поведенческий
признак определяется не
одним – двумя, а огромным
множеством генов,
работающих согласованно.
http://www.themegallery.com
LOGO
От чего зависит поведение человека?
ПОВЕДЕНИЕ
Генотип
Социальная
и природная
среда
http://www.themegallery.com
LOGO
Эффект Болдуина
Изменившееся поведение может вести к
изменению факторов отбора и,
соответственно, к новому направлению
эволюционного развития. Данное явление
известно как «эффект Болдуина» — по имени
американского психолога Джеймса Болдуина,
который впервые выдвинул эту гипотезу
в 1896 году.
Пример: наследственная способность
усваивать молоко в зрелом возрасте.
«Эффект Болдуина» можно рассматривать
как связь: поведение > гены.
http://www.themegallery.com
LOGO
Методы изучения влияния
генов на поведение
Решение проблемы
Единство методов
Молекулярный
Родословный
Близнецовый
На приемных
детях
http://www.themegallery.com
LOGO
Методы изучения влияния
генов на поведение
Английский биолог Фрэнсис
Гальтон использовал
близнецовый и родословный
методы в своих
исследованиях.
Работы на эту тему:
«Наследственный талант и
характер» и «История
близнецов как критерий
относительной силы
природы и воспитания»
опубликованы в 1865 году
http://www.themegallery.com
LOGO
Есть ли гены доброты и
агрессии?
На этот вопрос удалось
ответить голландскому
генетику Гансу
Бруннеру. Он
исследовал семью, в
трех поколениях которой
14 мужчин – проявляли
нарушения поведения,
импульсивную
агрессивность и
умственную отсталость.
http://www.themegallery.com
LOGO
Гены счастья и тревоги
Американский генетик Кен
Кендлер определил, что
тревожность и депрессия на
33–46% определяются
наследственностью. Но когда
пересчитали результаты,
объединив оба признака
вместе, получили более
высокие цифры.
Следовательно, существует
ген, который проявляется
либо как тревожность, либо
как депрессивность.
http://www.themegallery.com
LOGO
Гены асоциального поведения
Доктор Стивен Суоми из Национального
института детского здоровья и эволюции
человека изучал взаимосвязь агрессивного
поведения, генов и воспитания на обезьянах
резус.
Исследования доказали, что
наследственность и воспитание влияют на
поведение.
http://www.themegallery.com
LOGO
Датское исследование: доля сыновей, имевших судимости, в
семьях, различающихся по наличию судимости у биологического
и приёмного отца.
судимость обоих отцов
20,5
судимость приёмного отца
12,6
судимость биологического отца
14
нет судимости у родителей
9,5
5
10
15
20
25
% осуждённых сыновей
http://www.themegallery.com
LOGO
Причины, приводящие к асоциальному поведению.
http://www.themegallery.com
LOGO
Выводы
•Научные исследования доказали, что гены влияют на
поведение и поведение влияет на генотип («эффект
Болдуина»).
•Влияние генов на поведение изучается разными методами.
•Поведение – слишком сложная система, чтобы считать, что
какая-либо его форма определяется одним конкретным
геном.
•Формы поведения зависят от большого числа генов и
гораздо больше подвержены влиянию внешней среды, чем
биохимические и морфологические признаки.
•Однако, как и в какой мере гены влияют на поведение
человека, остается еще неразрешённой проблемой.
•Взаимодействие генов и среды иногда сравнивают с игрой в
карты – хороший игрок может выиграть и с плохими картами.
http://www.themegallery.com
LOGO
Существует ещё одно негласное разделение людей: на «сов» и «жаворонков» (промежуточный вариант получил определение «голуби»). По сути, это разделение людей на хронотипы (характеры суточной активности). Недавние исследования показали, что на хронотип влияют изменения на участке гена PER1, который отвечает за поддержание цикла «бодрствование-сон».
У «жаворонков» тип гена PER1 определяет более раннюю физическую и умственную активность, что позволяет им раньше других пробуждаться и включаться в работу. Другие варианты этого гена определяют режим активности, который свойственен «голубям» и «совам».
Любовь к чтению
Учителя знают, что одни дети читают «запоем», а других заставить взять книгу в руки можно только из-под палки. Не спешите винить своих отпрысков! Даже многим взрослым людям чтение даётся с большим трудом: вместо одних букв они видят другие, а это влияет не только на понимание слов, но и на правописание.
Главный ген, отвечающий за любовь к чтению (проще говоря — за способность легко воспринимать написанное), — DYX1C1. Если в процессе внутриутробного развития в этом гене возникают мутации, участок коры головного мозга формируется не так, как у большинства людей, и это мешает получать удовольствие от чтения.
Есть семьи, в которых читать не любит никто! И это неудивительно. В 50% случаев способность к восприятию книг передаётся по наследству: вернее, передаётся по наследству извилина височной доли левого полушария (этот участок отвечает за способность собирать буквы в слова). О таких людях как раз и говорят: «смотрю в книгу, вижу фигу».
Генетика лежит в основе возникновения многих заболеваний. Доказано, что генетическая предрасположенность отвечает за возникновение рака, диабета, гипертонии, аллергии. И этот список постоянно растёт. Недавно наследственный след был обнаружен и в возникновении мигрени. В случае если мать страдает мигренью, вероятность того, что с этим заболеванием столкнётся её ребёнок, — 60%. Если мигрень у обоих родителей, вероятность развития заболевания у ребёнка составляет 80-90%.
Смотрите также:
Люди с генетическими различиями любят друг друга сильнее >
Красивые люди эгоистичны по своей природе – ученые >
Форма головы определит судьбу женщины – ученые >