Сочинение на тему математики великие

9 вариантов

  1. Сочинения пятиклассников о математике.
    2011- 2012 учебный год
    Игорь Петренко, 5 «А»
    «Роль математики в жизни человека»
    Математика – наука,
    Хороша и всем нужна,
    Без неё прожить нам трудно,
    Без неё нам  жизнь сложна.
    Вы не встретите в жизни ни одного человека, который не занимался бы математикой.
    Каждый умеет считать, знает таблицу умножения, умеет рисовать геометрические фигуры. С этими фигурами мы часто встречаемся в окружающей жизни. Мы не замечаем, но математика словно сопровождает нас на каждом шагу, на протяжении всей жизни.
    Кто-то, возможно, думает, что различные замысловатые линии и поверхности можно встретить только в книгах ученых-математиков. Однако это не так. Стоит внимательно присмотреться, и мы сразу обнаружим вокруг нас всевозможные геометрические фигуры. Оказывается, их очень много, просто мы раньше их не замечали. Вот здание. Стены, потолок и пол в нем являются прямоугольниками, а сама комната – параллелепипед. Мебель в комнате тоже комбинация геометрических тел. Письменный стол – это параллелепипед, на столе лампа с абажуром в форме усеченного конуса. Ведро – либо цилиндрической формы, либо усеченный конус.
    Без знания математики никак нельзя обойтись в быту. Чтобы сделать покупку, мы решаем в уме задачу с данными: цена, количество, стоимость. Когда мы едем в путешествие, то решаем задачу сданными: скорость, время, расстояние.
    Мой папа – инженер службы режима газоснабжения. В своей работе он часто пользуется математическими формулами. Мама работает в социальной сфере, но ей также приходится считать, решать определенные задачи с помощью уравнений.
    Яна Малыженкова, 5 «А»
    «Математика в моей семье»
    Математика – точная наука, без которой в жизни не обойтись. Бухгалтеры, экономисты, инженеры работают с различными вычислительными программами на компьютере. Если не знать математику, то никаких вычислений не сделаешь. Хороший специалист тот, кто хорошо знает математику. Только когда хорошо знаешь математику, можно устроиться на хорошую работу, обойдя конкурентов. Математику нужно учить и знать со школы. В моей семье мама работает товароведом. Ей без математики просто не обойтись. Ведь если бы она не знала математику, её бы не назначили товароведом. Мама довольна своей работой.
    Алёна Скоробогатова, 5 «А»
    «Математика в работе людей»
    Нужна ли математика в работе людей? Миллионы студентов и школьников по всей России, корпя над очередной головоломкой преподавателей, задают себе этот вопрос.
    Ведь не всегда молодые специалисты, особенно гуманитарного плана, пользуются в своей профессиональной жизни знаниями, полученными при изучении курса математики в школе или в институте.
    Инженерам, строителям, механикам без математики никуда. Что касается других специальностей, то здесь  не всё так однозначно.
    Казалось бы, дизайнеру или рекламщику не нужна математика. Да, действительно, подобные профессии подразумевают наличие у человека знаний и навыков другого плана. Когда человек рисует, обрабатывает фотографию или беседует с потенциальным клиентом, умение находить определитель восьмого порядка явно не станет его основополагающим навыком. А сели работнику понадобится создать базу данных, всех своих клиентов и вычислить какие-либо показатели – минимальные, максимальные, оптимизировать процесс? Здесь на помощь придет математика – математическая статистика или теория вероятности, изучение которой так тяжело давалось вшколе или в институте.
    Математика нужна в каждой профессии. Например, моя мама работает в детской больнице медсестрой. В её работе нужна математика, чтобы рассчитать правильную дозировку лекарств, развести и набрать нужное  количество антибиотиков, разделить таблетки по возрасту. Она составляет сводку данных, подсчитывает диет-столы больных. Так же она подсчитывает, сколько использовала за свою смену шприцев, систем, дезсредств. Для всего этого нужна математика.
    Алина Грачева,  5 «А»
    «Математика в жизни моей семьи»
    Математика – очень сложная, интересная и увлекательная наука. Она нужна каждому из нас. Не зная математики мы, не сможем купить что-либо, смастерить, сшить или построить. Мама и папа без неё не обходятся ни дня. Старшая сестра тоже учит математику, она поступила в институт на экономический факультет. Мне этот предмет очень интересен. Есть много профессий, где требуется знание математики. Не зная математики, мы не сможем стать хорошими специалистами. Поэтому для меня очень важно учить, понимать математику, чтобы в дальнейшем быть лучшей в профессии, которую я выберу.
    Даниил Филаткин, 5 «А»
    «Математика в жизни моей семьи»
    Мой папа работает водителем и снабженцем. В его работе просто необходима математика. Ему все время приходится считать, сколько надо залить бензина в машину, или сколько строительных материалов надо купить и подвезти рабочим. А моя бабушка работает бухгалтером и она всегда считает. Этот предмет необходимо знать: ученикам, ученым, студентам, программистам. Математика нужна всему человечеству на Земле.
    Ксения Бреева,  5 «А»
    «Зачем нужна математика моей семье»
    Я думаю, что всем нужна математика. Где бы ты не работал, всегда что-то нужно считать…
    Моя бабушка работала в молодости животноводом в колхозе. Она выращивала животных, и ей надо было правильно рассчитать для них рацион кормления. Моя мама сейчас работает в больнице раздатчицей в столовой, и ей надо считать, сколько всего детей лечится в отделении, сколько уже выписали, сколько продуктов надо на день, чтобы приготовить обед. Мой папа работает водителем и ему тоже необходимы подсчеты.
    Так что всем в жизни пригодится математика, какую специальность ты бы не выбрал.
    Никита Беспалов, 5 «А»
    «Для чего нужна математика моим родителям?»
    Я считаю, что в современном мире математика очень нужна, пожалуй, как никогда раньше. С помощью математики можно анализировать тексты, извлекать информацию, осмысливать её.
    Мой папа считает так: «Математика нужна потому, что мы ей все время пользуемся. Утром встаем по часам, к определенному времени, это уже математика! На работе математика мне нужна, чтобы правильно работать на компьютере». Я полностью согласен с папой. Без математики жизнь невозможна! Моя мама считает так: «Математика нам нужна для тренировки памяти  и развития логического мышления»
    Мои родители и я хоть и  размышляем по-разному, делаем один вывод: « Математика нужна каждому из нас!»
    Диана Жангалиева, 5 «Г»
    «Для чего нужна математика?»
    Каждому человеку математика необходима в жизни. Я спросила у мамы: «Нужна ли тебе математика?» Мама сказала, что невозможно себе представить, как бы мы обходились без математики. Математика – это точная наука, царица всех наук. Математика нужна при ремонте, при покупках в магазине, математика нужна инженерам и портным, врачам и экономистам. Я люблю математику. Это главный предмет в школе.
    Светлана Белоногова, 5 «Г»
    «Для чего нам  нужна математика?»
    Моя мама педагог дополнительного образования и завуч в Центре дополнительного образования нашего района. Она оформляет много документов и ей надо готовить отчеты о проведенной работе. Для этого ей нужны математические знания и умение работать с компьютером. Бабуля у меня профессиональная портниха. Ей надо уметь делать выкройки и подсчитывать, сколько надо ткани на изделие, заказанное клиентом.
    Без математики не могли бы работать и продавцы, и бизнесмены, и врачи, и учителя.
    Математика нужна всем и всегда.
    Виктория Титаренко, 5 «А»
    «Для чего нам нужна математика?»
    Математика – это важная наука для человечества.  Без математики мы не смогли бы составлять чертежи для строительства, не смогли бы рассчитывать зарплату, не смогли бы делать расчеты в сельском хозяйстве. Наша экономика не существовала бы без математики.
    Да и в житейском плане было бы трудно без математики. Как сходить в магазин и рассчитаться за покупку? Как магазину сделать закупку товаров на определенный срок?
    Если бы не было математики, мы бы жили как пещерные люди.
    Екатерина Передумова, 5 «Г»
    «Для чего нужна математика в работе»
    Мои родители – инженеры. В работе им часто приходится  сталкиваться с математическими расчетами и задачами. Мама – инженер-технолог. Эта профессия требует большого внимания и точности. Сначала маме приносят чертеж нового изделия. Она должна все размеры будущего прибора проверить. Ведь от этого зависит, как он будет изготовлен. Дальше ей необходимо рассчитать время технологического процесса на изготовление прибора и его  составных частей. Так же она должна правильно определить расход материала, который потребуется для создания прибора. Без знания математики этого не сделать. Готовое изделие проходит много испытаний. Его взвешивают, чтобы точно определить вес. Режимы испытаний – время, температура – подбираются в зависимости от массы прибора. Во время всех испытаний проводится замер электрических параметров прибора. В Заключение измерительными инструментами проверяются его размеры.
    В работе инженера знание математики является основным.
    Александр Авдеев, 5 «Г»
    «Математика в жизни моей семьи»
    Математика необходима нам в жизни и в работе. Мой дедушка – инженер-конструктор. Ему нужна математика, чтобы правильно рассчитать точную конструкцию и сделать чертежи приборов. Моя бабушка – бухгалтер. Ей знания математики помогает составлять отчеты и выводить балансы. Моя мама – продавец. Ей тоже нужна математика в торговле, чтобы правильно сосчитать стоимость покупки.
    Не зная математики, нельзя стать хорошим специалистом.
    Михаил Юматов, 5 «Г»
    «Математика в жизни моей семьи»
    Моя мама Наталья Владимировна закончила строительный техникум. Все строительство состоит из расчетов. Чтобы построить дом, надо знать много формул. В строительстве без математики и геометрии никуда. Сейчас мама работает в торговле. Она продает печатную продукцию: газеты, журналы, книги. Естественно, не обойтись без знания математики, надо уметь быстро считать и правильно давать сдачу. Если плохо знать математику, то можно обсчитать покупателя или же самому «потерять» свои деньги.
    Я считаю, без математики нельзя стать хорошим специалистом.
    Анна Киселева, 5 «А»
    « Почему нам нужна математика?»
    Каждый день мы сталкиваемся с математикой. Это один из главных школьных предметов. Не зная математики, нельзя стать хорошим специалистом. Даже в дошкольном возрасте мы пользуемся математикой, считаем на пальцах.
    Мне нравятся уроки математики. Я люблю решать задачи и уравнения. У нас хорошая учительница, она понятно и интересно объясняет, поэтому мне легко дома учить уроки.
    Математика – мой любимый предмет.
    Алёна Баранова, 5 «Г»
    «Нужна ли в жизни математика?»
    Математика в моей семье нужна всем. Моя мама – продавец. Ей нужно подсчитывать, сколько каких продуктов надо в магазине, правильно рассчитывать покупателей. Моему папе тоже нужна математика, он директор частного предприятия. Ему нужно вести подсчет, сколько привезли груза, и выдавать зарплату рабочим. Моя бабушка ведет домашнее хозяйство: готовит и ухаживает за домашними животными: кроликами и козами. Ей нужно считать продукты для семьи  и корм для животных. Мне очень нужна математика. Это мой любимый  школьный предмет.
    Ольга Герасимова, 5 «А»
    «Математика в моей семье»
    Жизнь моей семьи тесно связана со знанием математики. Моя мама –  врач. Она лечит людей. В её работе математика применяется часто. Например, при расчете дозы лекарства. Если неправильно рассчитать дозу лекарства, то больному может стать хуже.
    Мой папа работает продавцом-консультантом в строительном магазине. В его работе очень важно знание математики. Он считает товар, который привозят, который покупают, количество оставшихся товаров на складе. Мои бабушка и дедушка тоже продавцы. Они постоянно ведут подсчеты. Сколько продали, сколько осталось, сколько заказать нового товара, какова выручка за день, сколько денег дал покупатель, сколько полагается дать сдачи. Я тоже люблю математику и хорошо учусь по математике.
    В наше время жить без математики невозможно.
    Дарья Осокина, 5 «А»
    «Математика в нашей жизни»
    Математика – точная наука, необходимая для нашей повседневной жизни. В сфере торговли и обслуживания населения нужны подсчеты необходимого товара и предметов народного потребления. Даже для людей, которые работают в офисах необходимо делать Отчеты, анализы, применяя математические наработки. Нельзя представить работу ученых всех областей без использования математических расчетов. Построение промышленных объектов невозможно без знания математики. Особенно больших успехов добились работники космической отрасли. И построение космических кораблей и расчеты траекторий полетов невозможны без знания математики. Математика – мой любимый предмет, я хорошо учусь по математике. Математика играет огромную роль в нашей жизни.
    Максим Михеев, 5 «Г»
    «Математика в нашей жизни»
    Люди начинают пользоваться математикой с раннего детства. Математику мы применяем каждый день. Когда мы идем в магазин, то мы считаем, сколько стоит покупка, сколько нам дадут сдачи.
    На основе математики изобрели компьютеры, телевизоры. Благодаря математике люди полетели в космос, сконструировав космический корабль, изобрели спутники, сотовую связь. С математикой связаны практически все науки.
    Математика нужна в любой профессии. Например, спортивному тренеру нужна математика, чтобы делать расчеты на тренировках спортсменов. Очень важна математика для экономистов, бухгалтеров, директоров любых предприятий. Строитель должен сделать точные расчеты, чтобы построить дом. Математику надо учить с детства, со школы.
    Юлия Шпак, 5 «Г»
    «Нужна ли математика в жизни моей семьи?»
    Мой папа  – водитель. Казалось бы, зачем водителю математика. А вот и нужна. Водитель применяет математику, подсчитывая количество потраченного бензина на пройденные километры, и с какой скоростью надо ехать, чтобы вовремя оказаться на месте.
    Математика – это сложная наука. Она изучает главным образом числа, величины и действия с ними.  Мне интересна математика, я охотно её учу.
    Благодаря математике появилось много наук и профессий.
    Любовь Грызалова, 5 «Г»
    «Зачем нам нужна математика?»
    Если бы не было математики, не было бы многих профессий. Математика нужна в любом деле. Летчику – чтобы набрать нужную высоту, дворнику, чтобы посчитать, сколько песка нужно насыпать на тот или иной участок, ну, а ученым математика нужна больше всех.
    Кто-то скажет: «Математика нужна только математика да физикам».
    Но всё не так просто. Археологу нужно провести расчеты, на какой глубине копать, а это тоже математика, ихтиологу – сколько рыбы в этом году вывелось.
    Даже простой человек неразрывно связан с математикой. Нам надо встать в определенное время, цифры – это тоже математика. Гламурной блондинке нужна математика, чтобы подсчитать на сколько килограммов она потолстела или похудела. Маленькому ребенку надо посчитать кубики. И даже это – математика.
    Математика нужна каждому и везде. Без нее ничего не обходится. Без нее не движется прогресс, без нее мы не смогли бы сделать даже маленькое дело.
    Математика – наука прошлого и будущего.
    Использованные ресурсы:
    Оформление работ – рисунки Жангалиевой Д., Белоноговой С., Малыжонковой Я.
    Интернет-ресурсы – рисунки:
    http://kinderrazukraski.ru/matematika-v-kartinkah.html
    http://kargoo.gov.kz/content/view/24/1182
    http://moskva.retarka.ru/ob.php?id=122336
    http://www.miatz.ru/blogs/SousSpaseniya/post2x2-5-/
    http://nauka-konf.livejournal.com/2420.html
    http://raskrashkirus.ru/risunki-na-temu-matematika.html
    http://pustunchik.ua/interesting/mathfacts/Fokus-z-kalendarem
    http://www.rusmed-forever.ru/forum/index.php?showtopic=22&st=120&p=13242
    http://shablonyblankov.ru/kartinki-po-matematike.html
    http://detirisuyut.ru/matematika.html
    http://raskrashkirus.ru/detskiy-risunok-na-temu-zanimatelnaya-matematika.html
    http://kinderrazukraski.ru/risunki-dlya-matematiki.html

  2. ЭССЕ
    «Математика и я»
    Математика в нашей жизни
    Математика-это предмет, который мы любим больше других потому что математика – это гармония жизни. Она как сердце в груди человека. С малых лет эта чудесная наука входит в нашу жизнь. Уже новорожденному говорят: « Сегодня ты молодец: проспал три часа». А порой укоряют : « Ну что же ты не ешь. Вот наш сосед Арсенчик уже весит пять килограммов, а ты – всего три с половинкой» .
    А разве можно забыть, как в детстве мы считали: « Раз, два, три! Выходи, наверно, ты». И начиналась любая интересная игра. И ещё ! Мы все очень любили и любим ходить и в магазин, и на рынок. Там царство математики окружает нас, превращая жизнь в сказку. Мы говорим:
    – Мама, купи мне арбуз. Ну хотя бы маленький.
    А мама отвечает:
    – Нет, нас в семье четверо. Маленького арбуза не хватит. Купим большой, килограммов на десять.
    А сколько математических знаний необходимо на кухне! Каждый кулинарный рецепт – это математика: Нарезаем килограмм мяса, две луковицы, четыре морковки. Поджариваем мясо, лук, морковь. Добавляем четыре пиалы воды, кипятим, солим. Промываем две пиалы риса. Варим, и ароматный плов готов.
    Цифры и математические действия окружают нас и в школе. Возьмем русский язык. В нем числительные занимают свое почетное место. Они даже делятся на две группы: порядковые и числительные. И по структуре их тоже делят: простые, сложные и составные. А количественные еще и образуют свои группы: целые, дробные и собирательные.
    Даже на уроке музыки мы считаем: до второй октавы. А такие предметы, как физика и химия, вообще, существовать не могут без математики. Математика нужна и в любой физической работе: уборке дома и на дворе, в работе слесаря, столяра, водителя, машиниста, продавца…
    А разве врачу не нужна математика? Нет, без неё ему не обойтись. Здесь и пульс надо проверить, и давление измерить. А рецепт? Ведь это же математическая запись. Вот его буквальный перевод: «Взять ложку, накапать пятнадцать капель, разбавить водой и выпить. Лекарство следует принимать за тридцать минут до обеда.»
    И агроному, ветеринару тоже жизненно необходима математика. Ведь все требует измерения: количество корма, вес удобрений и привес массы животного.
    И во время отдыха нас окружает математика. Мы отмечаем: «Едем два часа, а уже проехали сто восемьдесят километров…», а порой говорим: «Я уже посетил пять красивейших горных озер мира.»
    Даже любое хобби тесно связано с математикой. Шахматисту нужна математика. Без математики не обойтись художнику, скульптуру, вышивальщице…
    Нет на свете такого увлечения, где бы не нужна была эта точная и важная наука.
    Математика важна и в личных отношениях. О надежном друге мы говорим: «Я знаю его уже четырнадцать лет, у него есть и доброта, и надежность, и верность данному слову, и преданность. Отличный друг!» А сколько гармонии вносит математика в любовь! « Я подарил любимой девять роз: три алых, три белых, три пурпурных», -утверждает герой романа.
    Цифры, математические задачки окружают нас, внося в нашу жизнь порядок и четность.
    И если раньше пели: «Почему я водонос? Удивительный вопрос: Да потому что без воды и не туда, и не сюда .». Так и без математики не обойтись в нашей жизни.
    А развитие цивилизации требует все новых, более сложных вычислений, математических знаний. Мы изучаем космос и математика нам нужна. Мы создаем новые лекарства, и без математики нам не обойтись. Мы создаем новые машины и тут математика нам пригодится .
    Недаром говорят: «Математика – царица всех наук»
    Человек, знающий и любящий математику,- счастливый человек. И у него всегда порядок в мыслях, гармония в чувствах, точность и правильность в речи. И очень правильно подмечено: « Математику следует любить уже только за то, что она уже в порядок приводит!»
    Да здравствует математика, лучшая из наук!

  3. Почему я люблю математику?

    Математика — мой любимый школьный предмет с первого класса. Мне нравится решать примеры и задачи, находить ответы на логические вопросы.
    Я люблю математику, потому что в ней все подчиняется определенным правилам, которые легко понять, и которые одинаковы абсолютно для всех. Математика имеет свои, неизменные законы, которые действуют во все времена и во всех странах. Математики могут обмениваться решениями, уравнениями и интересными примерами, даже если они не говорят на одном языке. Во всем мире принято одни и те же формулы, одни и те же знаки, и это делает людей ближе.
    Математика нужна абсолютно во всех сферах жизни. Каждый день мы пользуемся простыми арифметическими действиями, чтобы делать покупки, чтобы планировать свое время. В каждой профессии так или иначе используются математические расчеты, даже если это не заметно с первого взгляда. Для многих специальностей нужно глубокое знание математики, например, для инженеров, программистов, физиков.
    Математика — это основа для всех наук. Невозможно изучать физику, химию, биологию, если не умеешь делать необходимые расчеты. Чтобы добиться успеха и получить хорошее образование, необходимо хорошо знать математику.

  4. Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был, прежде всего, математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность.
    Имя Эйлера дорого всему прогрессивному человечеству, которое чтит в нём одного из величайших геометров мира. В качестве члена Петербургской и Берлинской Академий наук Эйлер содействовал развитию математических наук в обеих странах и распространению в них физико-математических знаний Леонард Эйлер был избран академиком (и почётным академиком) в восьми странах мира. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук.
    Трудно даже перечислить все отрасли, в которых трудился великий учёный. Но в первую очередь он был математиком Неоценимо велика роль Эйлера в создании классических образцов учебной литературы и в стимулировании творчества многих поколений математиков. «Читайте, читайте Эйлера, он — наш общий учитель» , — любил повторять Лаплас. И труды Эйлера с большой пользой для себя читали — точнее, изучали — и «король математиков» Карл Фридрих Гаусс, и чуть ли не все знаменитые учёные последних двух столетий. Даже сейчас, через много лет после смерти Эйлера, его работы побуждают учёных всего мира к творчеству в самых различных областях математики и её приложений. Всем нам знакомы понятия о точках Эйлера, прямой Эйлера и окружности Эйлера в треугольнике; о теореме Эйлера для многогранников. Один из простейших методов приближённого решения дифференциальных уравнений, широко применявшийся до самых последних лет, называется методом ломаных Эйлера; во многих разделах математики важную роль играют Эйлеровы интегралы (бета-функция и гамма-функция Эйлера) . В механике при описании движения тел пользуются углами Эйлера, в гидродинамике рассматривается число Эйлера… Нет, пожалуй, ни одной значительной области математики, в которой не оставил бы след один из величайших математиков всех времён и народов, гений XVIII в. Леонард Эйлер. В 1963 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника.
    А 15 апреля 1707 г. у них родился сын, названный Леонардом. Начальное обучение будущий учёный прошел дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого. Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию — под надзор бабушки. 20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета: отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике.
    И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724 г. 17-летний Леонард Эйлер произнёс по – латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона — и был удостоен учёной степени магистра (в XIX в. в большинстве университетов Западной Европы ученая степень магистра была заменена степенью доктора философии). В последующие два года юный Эйлер написал несколько научных работ. Другая работа, «Диссертация по физике о звуке» , также получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о «Диссертации» , 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом. Вначале зимы 1726 года Эйлеру сообщили из Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы.
    По просьбе Петра I Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии.
    «
    1
    2
    3
    4
    »

  5. Математика в жизни моих родителей.
    В наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Мои родители по профессии экономисты. Математика играет важную роль в их работе. Знания математики – умение считать, думать, рассуждать – все эти навыки и способности помогают в работе и жизни моим родителям. Работа экономиста связана с цифрами и подсчетами. Нужно уметь сосчитать затраты и прибыль, а также рассчитать заработную плату.
    С помощью математики можно анализировать тексты, извлекать информацию и находить смысл. Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира.
    Гаськова Дарья 5-А класс.
    Зачем мне нужна математика?
    Мне нужна математика для счета, чтобы знать все числа и уметь их складывать. Математика нужна для измерения длины, расстояния. Не зная математики я не смогу определить который час и не смогу ориентироваться во времени. Без математических вычислений я не смогу определить какой месяц по счету наступил. Придя в магазин мне необходимо посчитать, сколько денег нужно заплатить за покупку. Выбирая себе одежду, я должен знать свой размер, а без математики его не определишь.
    Изучая природу, я опять сталкиваюсь с математикой. С ее помощью я узнаю, насколько градусов поднимается или опускается температура воздуха. Каждый год, переходя в старшие классы, я буду больше узнавать о математике, так как в дальнейшей моей жизни мне без нее не обойтись.
    Сербиненко Никита 5-В класс.
    Лично я обожаю математику. Математика великая наука, она нужна каждому, и каждый день мы применяем знания математики в жизни. Вся наша жизнь – это вычисления и подсчеты. Без знаний математики мы не можем вычислить время, подсчитать деньги, построить дом. Мы не можем сравнить предметы, расстояния. Математика развивает интеллект и помогает найти решения в сложной задаче. Если хочешь быть успешным человеком и иметь хорошую работу, то нужно изучать математику.
    Коломентьев Влад 5-В класс
    Однажды я решала контрольную работу по математике. Контрольная оказалась очень трудной, сложной, и я долго не могла ее решить. Решив ее я задумалась: «А зачем мне нужна математика? Неужели без нее нельзя прожить?» И я начала рассуждать: «Зная математику, мы знаем время – минуты, секунды, часы. Зная математику, мы можем прибавлять, вычитать, делить и умножать. Мы можем считать предметы, измерять. Даже в магазин сходить без математики нельзя».
    Поэтому, мой вывод такой – МАТЕМАТИКА НУЖНА ВСЕМ И ВСЕГДА!
    Власова Валерия 5-А класс
    Я рано научился считать, еще когда ходил в детский садик. Математика может понадобиться мне во многих случаях. Например, когда я прихожу в магазин за покупками, нужно правильно посчитать стоимость покупки и сдачу. Или в медицине, когда нужно правильно отмерить количество лекарства. И вообще, математика нужна всем людям. Еще благодаря математике я научился понимать по часам, теперь я никуда и никогда не опаздываю.
    Барташевич Влад 5-А класс
    Математика одна из самых древних и важных наук. Человеку в жизни без не обойтись без хорошего знания математики. Математика нужна для того, чтобы получить хорошее образование, научиться считать быстро и хорошо в уме, решать задачи, примеры и уравнения.
    Предмет этот очень сложный и к нему нужно относиться с пониманием и уважением. На уроке нужно внимательно слушать учителя, чтобы понять новую тему, а ведь они будут все сложнее и сложнее.
    Мне очень нравиться предмет математика.
    Караванова Татьяна 5-А класс.

  6. Великие математики второй половины XVII столетия
    СОДЕРЖАНИЕ.
    Глава 1. Первоначальное появление математики.
    Глава 2. Великие математики XVII столетия.
    ГЛАВА 1. ПЕРВОНАЧАЛЬНОЕ ПОЯВЛЕНИЕ МАТЕМАТИКИ.
    Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века — палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом — собиранием ее, где только это было возможно. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки.
    Пока не произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век неолит.
    Постепенно прекращались кочевые странствия в поисках пищи. Рыболовы и охотники все больше вытеснялись первобытными земледельцами. Такие земледельцы, оставаясь на одном месте, пока почва сохраняла плодородие, строили жилища, рассчитанные на долгие сроки.
    Деревни вели между собой значительную торговлю, которая настолько развилась, что можно проследить наличие торговых связей между областями, удаленными на сотни километров друг от друга. Эту коммерческую деятельность сильно стимулировали открытие техники выплавки меди и бронзы и изготовление сначала медных, а затем бронзовых орудий и оружия. Это в свою очередь содействовало дальнейшему формированию языков. Слова этих языков выражали вполне конкретные вещи и весьма немногочисленные абстрактные понятия, но языки уже имели известный запас слов для простых числовых “терминов и для некоторых пространственных образов.
    Числовые термины, выражающие некоторые из “наиболее абстрактных понятий, какие в состоянии создать человеческий ум”, как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, “каким-то”—“какой-то” скорее, чем “один человек”) и двумя и многими. С понятия числа большие числа сначала образовывались с помощью сложения: 3 путем сложения 2 и 1, 4 путем сложения 2 и 2, 5 путем сложения 2 и 3.
    Развитие ремесла и торговли содействовало кристаллизации понятия числа. Числа группировали и объединяли в большие единицы, обычно пользуясь пальцами одной руки или обеих рук—обычный в торговле прием.
    Пальцевый счет, то есть счет пятками и десятками, возник только на известной ступени общественного развития. Но раз до этого дошли, появилась возможность выражать числа в системе счисления, что позволяло образовывать большие числа. Так возникла примитивная разновидность арифметики. Четырнадцать выражали как 10 + 4, иногда как 15 — 1. Умножение зародилось тогда, когда 20 выразили не как 10 + 10, а как 2 * 10. Подобные двоичные действия выполнялись в течение тысячелетий, представляя собой нечто среднее между сложением и умножением.
    Возникла и необходимость измерять длину и емкость предметов. Единицы измерения были грубы, и при этом часто исходили из размеров человеческого тела. Об этом нам напоминают такие единицы, как палец, фут (то есть ступня), локоть. Когда начали строить дома такие, как у земледельцев Индии или обитателей свайных построек Центральной Европы, стали вырабатываться правила, как строить по прямым линиям и под прямым углом.
    Человек неолита обладал так же острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин и тканей, позже — обработка металлов вырабатывали представление о плоскостных и пространственных соотношениях.
    ГЛАВА 2. ВЕЛИКИЕ МАТЕМАТИКИ XVII СТОЛЕТИЯ.
    Стремительное развитие математики в эпоху Возрождения было обусловлено не только “счетным уклоном” (Rechenhaftigkeit) купеческого класса, но и эффекгивным использованием и дальнейшим усовершеиствованием машин. Восток и классическая древность пользовались машинами, машинами вдохновлялся гений Архимеда. Однако существование рабства и отсутствие экономически прогрессивного городского уклада жизни сводили на нет пользу от машин в этих более древних общественных формациях. На это указывают труды Герона, в которых есть описание машин, но только предназначенных для развлечения или мистификации.
    От машин путь вел к теоретической механике и к научному изучению движения и изменения вообще. Античность уже дала трактаты по статике, и исследования по теоретической механике нового времени, естественно, опирались на статику классических авторов. Задолго до изобретения книгопечатания появлялись кпиги о машинах, сначала эмпирические описания (Кизер (Кyеsеr), начало пятнадцатого века), затем более теоретические, как киига Леона Баттисты Альберти об архитектуре (ок. 1450 г.) и рукописи Леонардо да Винчи (ок. 1500 г.). В рукописях Леонардо в зародыше содержалась вполне механистическая теория природы.
    В поисках новых изобретений иногда непосредственно приходили к математическим открытиям. Знаменитытм примером является работа “Маятниковые часы” (Horologium Oscillatorium, 1673г.) Xристиана Гюйгенса. В ней в поисках лучшего способа измерения времени рассмотрены не только маятниковые часы, но изучаются также эволюты и эвольвенты плоской кривой.
    Гюйгенс был голландцем, человеком зажиточным и в течение ряда лет жил в Париже. Он был столь же выдающимся физиком, как и астрономом, создал волновую теорию света и выяснил, что у Сатурна есть кольцо. Его книга о маятниковых часах оказала влияние на Ньютона (см. Principia). Для периода до Ньютона и Лейбница наряду с “Арифметикой” Валлиса эта книга представляет анализ в его наиболее развитой форме. Письма и книги Валлиса и Гюйгенса изобилуют новыми открытиями: спрямлениями кривых, квадратурами, построением обверток. Гюйгенс исследовал трактрису, логарифмическую кривую, цепную линию и установил, что циклоида — таутохронная кривая. Несмотря на это обилие результатов, многие из которых были получены уже после того, как Лейбниц опубликовал свое исчисление, Гюйгенс целиком принадлежит к периоду предтеч.
    Надо сказать еще, что Гюйгенс был одним из немногих среди больших математиков семнадцатого века, кто заботился о строгости: его методы всегда были вполне архимедовыми.
    Работы математиков этого периода охватывали много областей, новых и старых. Они обогатили оригинальными результатами классические разделы, пролили новый свет на прежние области и создавали даже совершенно новые области математических исследований. Примером первого рода может служить то, как Ферма изучал Диофанта. Примером второго рода является новая интерпретация геометрии Дезарга. Вполне новым творением была математическая теория вероятностей.
    Диофант стал доступным для читающих на латинском языке в 1621 г.). В своем экземпляре этого перевода Ферма сделал свои знаменитые заметки на полях (опубликованы сыном Ферма в 1670 г.). Среди них мы находим “великую” теорему Ферма о том, что уравнение х n + у n = z n невозможно при целых положительных значениях х , у, z, если п > 2,— в 1847 г. это привело Куммера к его теории идеальных чисел. Доказательства, пригодного для всех п, до сих пор нет, хотя теорема несомненно верна для большого числа значений n2 .
    Ферма написал на полях против 8-й задачи II книги Диофанта “Разделить квадратное число на два других квадратных числа” следующие слова: “Разделить куб на два других куба, четвертую степень или вообще какую-либо степень выше второй на две степени с тем же обозначением невозможно, и я нашел воистину замечательное доказательство этого, однако поля слишком узки, чтобы поместить его”. Если Ферма имел такое замечательное доказательство, то за последующие три столетия напряженных исследований такое доказательство не удалось получить. Надежнее допустить, что даже великий Ферма иногда ошибался.
    В другой заметке на полях Ферма утверждает, что простое число Вида 4n +1 может быть одним и только одним образом представлено как сумма двух квадратов. Эту теорему позже доказал Эйлер. Еще одна “теорема Ферма”, которая утверждает, что a p — 1 — 1 делится на р, когда р простое число и а не делится на р .
    Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интерес к задачам, связанным с вероятностями, происходило прежде всего под влиянием развития страхового дела, но те частные вопросы, которые побудили больших математиков поразмыслить над этим предметом, были поставлены в связи с играми в кости и в карты.
    Вопросы, связанные с вычислением вероятности результата при различных играх, не раз ставились в средневековой литературе за столетия до того, как Мере обратился к Паскалю, и решались иной раз верно, иной раз неверно. В частности, среди ближайших предшественников Паскаля и Ферма — Тарталья и Галилей. Но решение таких вопросов могло стать поводом для создания особой теории, затем целой математической дисциплины только под влиянием серьезных запросов практики
    Блез Паскаль был сыном Этьена Паскаля, корреспондента Мерсенна; кривая “улитка Паскаля” названа в честь Этьена. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл “теорему Паскаля” о шестиугольнике, вписанном в коническое сечение. Эта теорема была опубликована в 1641 г. на одном листе бумаги и повлияла на Дезарга. Через несколько лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Пор-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе. Его трактат об “арифметическом треугольнике”, образованном биномиальными коэффициентами и имеющем применение в теории вероятностей, появился посмертно в 1664 г. Мы уже упоминали о его работах по интегрированию и о его идеях относительно бесконечного и бесконечно малого, которые оказали влияние на Лейбница. Паскаль первый придал удовлетворительную форму принципу полной индукции
    Жерар Дезарг был архитектором в Лионе. Он автор книги о перспективе (1636 г.). Его брошюра с любопытным названием “Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью”, 1639 г.) содержит некоторые из основных понятий синтетической геометрии такие, как точки на бесконечности, инволюции, полярные соотношения,— все это на курьезном ботаническом языке. Свою “теорему Дезарга” о перспективном отображении треугольников он обнародовал в 1648 г. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии.
    Общий метод дифференцирования и интегрирования, построенный с полным пониманием того, что один процесс является обратным по отношению к другому, мог быть открыт только такими людьми, которые овладели как геометрическим методом греков и Кавальери, так и алгебраическим методом Декарта и Виллиса. Такие люди могли появиться лишь после 1660 г., и они действительно появились в лице Ньютона и Лейбница. Очень много написано по вопросу о приоритете этого открытия, но теперь установлено, что оба они открыли свои методы независимо друг от друга. Ньютон первым открыл анализ (в 1665— 1666 гг.), Лейбниц в 1673—1676 гг., но Лейбниц первый выступил с этим в печати (Лейбниц в 1684—1686 гг., Ньютон в 1704—1736 г. г. (посмертно)). Школа Лейбница была гораздо более блестящей, чем школа Ньютона.
    Исаак Ньютон был сыном землевладельца в Линкольншире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессорскую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г., когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии” (Philisophiae naturalis principia mathematica, 1687 г.), огромном томе, содержащем аксиоматическое построение механики и закон тяготения—закон, управляющий падением яблока на землю и движением Луны вокруг Земли. Ньютон строго математически вывел эмпирически установленные законы Кеплера движения планет из закона тяготения обратно пропорционально квадрату расстояния и дал динамическое объяснение приливов и многих явлений при движении небесных тел. Он решил задачу двух тел для сфер и заложил основы теории движения Луны. Решив задачу о притяжении сфер, он тем самым заложил основы и теории потенциала. Его аксиоматическая трактовка требовала абсолютности пространства и абсолютности времени.
    Открытие Ньютоном флюксий стоит в тесной связи с его изучением бесконечных рядов по “Арифметике” Валлиса. При этом Ньютон обобщил биномиальную теорему на случаи дробных и отрицательных показателей и таким образом открыл биномиальный ряд.
    Ньютон писал также о конических сечениях и о плоских кривых третьего порядка. В “Перечислении линий третьего порядка” (Enumeratio linearum tertii ordinis, 1704 г.) он дал классификацию плоских кривых третьей степени на 72 вида, исходя из своей теоремы о том, что каждую кубическую кривую можно получить из “расходящейся параболы”y2 = ax3 + bx2 + cx + d при центральном проектировании одной плоскости на другую. Это было первым важным новым результатом, полученным путем применения алгебры к геометрии, так как все предыдущие работы были просто переводом Аполлония на алгебраический язык Ньютону принадлежит также метод получения приближенных значений корней численных уравнении, который он разъяснил на примере уравнения x3 — 2 x — 5 = 0, получив х » 2,09455147.
    Готфрид Вильгельм Лейбниц родился в Лейпциге, а большую часть жизни провел при ганноверском дворе, на службе у герцогов, один из которых стал английским королем под именем Георга I.
    Кроме философии, он занимался историей, теологией, лингвистикой, биологией, геологией, математикой, дипломатией и “искусством изобретения”. Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей пружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. “Общая наука” (Scientia universalis), которую он пытался построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски “всеобщей характеристики” привели его к занятиям перестановками, сочетаниями и к символической логике; поиски “всеобщего языка”, в котором все ошибки могли выявлялись бы как ошибки вычислений, привели его не только к символической логике, но и к многим новшествам в математических обозначениях. Лейбниц — один из самых плодовитых изобретателей математических символов. Немногие так хорошо понимали единство формы и содержания. На этом философском фоне можно понять, как он изобрел анализ: это было результатом его поисков “универсального языка”, в частности языка, выражающего изменение и движение.
    Лейбниц нашел свое новое исчисление между 1673 и 1676 гг. под личным влиянием Гюйгенса и в ходе изучения Декарта и Паскаля. Его подстегивало то, что он знал, что Ньютон обладал подобным методом.
    Впервые анализ в форме Лейбница был изложен им в печати в 1684 г. в шестистраничной статье в Acta Eruditorum, математическом журнале, который был основан при его содействии в 1682 г.
    Характерно название этой статьи: “Новый метод для максимумов и минимумов, а также для касательных, для которого не являются препятствием дробные и иррациональные количества, и особый вид исчисления для этого”. Изложение было трудным и неясным, но статья содержала наши символы dx, dy и правила дифференцирования, включая d ( uv ) = udv + vdu и дифференцирование дроби, а также условие dy = 0 для экстремальных значений и d 2 y = 0 для точек перегиба. За этой статьей последовала в 1686 г. другая статья с правилами интегрального исчисления в с символом o (она была написана в форме рецензии).
    Нашими обозначениями в анализе мы обязаны Лейбницу, ему принадлежат и названия “дифференциальное исчисление” и “интегральное исчисление”. Благодаря его влиянию стали пользоваться знаком “ = ” для равенства и знаком “ • ” для умножения. Лейбницу принадлежат термины “функция” и “координаты”, а также забавный термин “оскулирующий” (целующий). Ряды
    носят имя Лейбница, хотя не он первый их открыл.

  7. B современном мире математика очень нужна, пожалуй, как никогда раньше. Ведь нас со всех сторон окружают компьютеры, цифры. Мир входит в новую эпоху- эпоху цифр.
    С помощью математики можно анализировать тексты, извлекать информацию и находить смысл. Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира.
    Математика — один из важнейших учебных предметов в школе. Она приобретает особое значение в связи с необычайным ростом науки, технического прогресса в нашей стране.
    Высокий уровень развития математики необходим для прогресса многих наук. Трудно найти такую область знания, где математика не играла бы никакой роли. Хорошо известно, что развитие наук в последнее время характеризуется проникновением в них математических методов и математического стиля мышления. Это касается не только физики, техники и астрономии, но и таких, казалось бы, весьма далеких от математики наук, как современная химия, биология, геология, археология, медицина, метеорология, экономика и др. Математика необходима в практической деятельности инженеров и техников, нужна для многих видов квалифицированных рабочих профессий.
    «Математику только зачем учить надо, что она ум в порядок приводит» – это слова нашего знаменитого и гениального Ломоносова
    “Математика – гимнастика ума” – говорил великий полководец Суворов

  8. Виктор Яковлевич Буняковский
    (16.12.1804 – 12.12.1889)
    Родился 3 декабря (по новому стилю — 16 декабря) 1804 года в местечке Баре, Подольская губерния. Умер 30 ноября (12 декабря) 1889 года в Петербурге.
    Русский математик, член Петербургской Академии Наук (1830) и ее вице-президент (1864-1889гг.). Родился в Баре (ныне Винницкой области). Начальное образование – домашнее. В 1820-1825гг.учился за границей, в частности в Париже, где в то время преподавали такие знаменитые ученые, как П. С. Лаплас, Ж. Б. Ж. Фурье, С. Д. Пуассон, О. Л. Коши, А. М. Лежандр, А. М. Ампер и другие. Больше всего работал Буняковский по теории чисел и теории вероятностей.
    В 1839 году Буняковский выпустил в свет свой первый том «Лексикона чистой и прикладной математики», доведённый им, по недостатку средств,лишь до буквы «Д». В 1846 году появился труд Буняковского, послуживший началом его всемирной известности, — «Основания математической теории вероятностей».
    Все работы Буняковского, ставящие его в число величайших европейских математиков, помимо ценности в научном отношении — по богатству, новизне и оригинальной разработке научно-математических материалов, — отличаются замечательной ясностью иизяществом изложения. Многие из них переведены на иностранные языки.
    Буняковский изобрёл: планиметр, пантограф, прибор для измерения квадратов, самосчёты Буняковского — вычислительный механизм, основанный на принципе действия русских счётов. Аппарат предназначался для сложения большого числа двузначных чисел.
    Научные заслуги Буняковского были оценены по заслугам уже современниками. Он былпочётным членом всех русских университетов, многих иностранных и русских учебных обществ. При академии наук была учреждена премия его имени за лучшие сочинения по математике. Буняковский пользовался заслуженным авторитетом среди европейских учёных. Симпатии общества и признательность его Буняковскому за его учёные заслуги особенно ярко выразилась в 1875 и 1878 годах, когда праздновались юбилеи Буняковского послучаю пятидесятилетия со времени получения им степени доктора математических наук парижского университета и пятидесятилетие его научной академической деятельности.
    При богатстве и глубине содержания, лекции Буняковского всегда отличались поразительной ясностью, увлекательностью и в то же время литературной красотой изложения, делали легко доступными самые сложные математические положения иувлекали даже безучастных слушателей. По отношениям к лекциям Буняковский проявлял замечательную аккуратность и в течение всего времени своей службы в университете не пропустил ни одной лекции и не опоздал ни разу.
    Николай Егорович Жуковский
    (05.01.1847 — 17.03.1921)
    Русский учёный, создатель аэродинамики как науки. Заслуженный профессор Московского университета, профессор теоретической механикиИмператорского Московского технического училища (с 1918 — Московского высшего технического училища); член-корреспондент Императорской Академии наук по разряду математических наук (1894).
    Жуковский поступил в Московский университет на физико-математический факультет. По окончании университета в 1868 году, пытался учиться в Петербургском институте путей сообщения, но неуспешно. Работает над диссертацией,преподаёт в женской гимназии, в Московском высшем техническом училище. Здесь он создал кафедру «Теоретическая механика», аэродинамическую лабораторию, обучил множество известных впоследствии конструкторов самолётов, авиационных двигателей.
    В своей речи «Старая механика в новой физике», произнесённой 3 марта 1918 г. в Московском математическом обществе, Жуковский, в частности, сказал:
    …Эйнштейн в 1905 г.стал на метафизическую точку зрения, которая решение прилегающий к рассматриваемому вопросу идеальной математической проблемы возвела в физическую реальность. …Я убежден, что проблемы громадных световых скоростей, основные проблемы электромагнитной теории разрешатся с помощью старой механики Галилея и Ньютона. … Мне сомнительна важность работ Эйнштейна в…

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *