Сочинение на тему реактивное движение

13 вариантов

  1. 1
    Текст добавил: я ютубер кто неверет таму в клас

    использованием орбитальных станций. Он ­ автор многих научно­фантастических
    произведений. Среди них «Грезы о Земле и небе», «На Весте», повести «На Луне» .
    В своей квартире Циолковский создал первую в России аэродинамическую лабораторию.
    Сергей Павлович Королёв— советский учёный, конструктор и организатор производства
    ракетно­космической техники и ракетного оружия СССР.
    Его конструкторские разработки в области ракетной техники имели исключительную
    ценность для развития советского ракетного вооружения, а вклад в организацию и
    развитие практической космонавтики имеет мировое значение.
    В 1956 году под руководством С. П. Королёва была создана первая отечественная
    стратегическая ракета, ставшая основой ракетного ядерного щита страны.
    4 октября 1957 года «Он был мал, этот самый первый искусственный спутник нашей
    старой планеты, но его звонкие позывные разнеслись по всем материкам и среди всех
    народов как воплощение дерзновенной мечты человечества». — сказал позже С. П.
    Королёв.
    12 апреля 1961года. Сергей Павлович Королёв снова поражает мировую общественность.
    Создав первый пилотируемый космический корабль «Восток­1», он реализует первый в
    мире полёт человека — гражданина СССР Юрия Алексеевича Гагарина по околоземной
    орбите.
    С. П. Королёв был генератором многих неординарных идей и прародителем выдающихся
    конструкторских коллективов, работающих в области ракетно­космической техники, его
    вклад в развитие отечественной и мировой пилотируемой космонавтики является
    решающим. Можно только удивляться многогранности таланта Сергея Павловича, его
    неиссякаемой творческой энергии. Он является первопроходцем многих основных
    направлений развития отечественных ракетного вооружения и ракетно­космической
    техники. Трудно себе даже представить, какого уровня достигла бы она, если бы
    преждевременная смерть Сергея Павловича не прервала творческий полёт его мыслей
    Юрий Алексеевич Гагарин— русский советский лётчик­космонавт, первый человек,
    совершивший полёт в космическое пространство.
    В 1954 году впервые пришёл в Саратовский аэроклуб. В 1955 году Юрий Гагарин добился
    значительных успехов, закончил с отличием учёбу и совершил первый самостоятельный
    полет на самолёте Як­18.
    27 октября 1955 года Гагарин был призван в армию и отправлен в Оренбург, в 1­е военно­
    авиационное училище лётчиков имени К. Е. Ворошилова. 25 октября 1957 Гагарин
    училище закончил
    Старт корабля «Восток» был произведён в 09часов 07 минут 12 апреля 1961 года по
    московскому времени с космодрома Байконур. Облетев земной шар, он через 1 час 48
    минут благополучно приземлился в заданном районе Советского Союза.
    После приземления Гагарин по телефону отрапортовал: «Задачу выполнил, приземлился в
    заданном районе, чувствую себя хорошо, ушибов и поломок нет. Гагарин».
    Работы по усовершенствованию космической техники продолжались. Были созданы
    орбитальные станции, постоянно действующие на околоземной орбите.
    6

  2. Содержание:
    История реактивного движения
    Кто открыл реактивное движение?
    Примеры реактивного движения в природе
    Закон реактивного движения
    Закон сохранения импульса и реактивное движение
    Формула реактивного движения
    Реактивное движение в технике – принцип работы реактивного двигателя
    Реактивное движение, видео
    У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, осьминоги, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

    История реактивного движения

    С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.
    Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.
    Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

    Кто открыл реактивное движение?

    Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.
    Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

    Примеры реактивного движения в природе

    Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.
    Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).
    Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.
    Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.
    Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

    Закон реактивного движения

    Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.
    Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.
    То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

    Закон сохранения импульса и реактивное движение

    Физика поясняет процесс реактивного движения законом сохранения импульса. Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

    Формула реактивного движения

    В целом реактивное движение можно описать следующей формулой:
    msvs+mрvр=0
    msvs=-mрvр
    где msvs импульс создаваемой струей газов, mрvр импульс, полученный ракетой.
    Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

    Реактивное движение в технике – принцип работы реактивного двигателя

    В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть
    запас топлива,
    камера, для сгорания топлива,
    сопло, задача которого ускорять реактивную струю.
    Так выглядит реактивный двигатель.

    Реактивное движение, видео

    И в завершение занимательное видео о физических экспериментах с реактивным движением.

  3. ВВЕДЕНИЕ
    Актуальность.    Человечеству от природы присуще стремление познать новое, ранее неизвестное. Вопрос: что в космосе? – никогда не давал человечеству покоя. Этот вопрос волнует и нас, живущих в современном мире. Космические исследования открыли для человечества  космос, со всеми его планетами, звездами и другими образованиями. Как же стали возможны космические полёты?
    Гипотеза.  Эта тема меня заинтересовала,  я  предположил, что ракета может оттолкнуться от земли с помощью какой-то силы, большей, чем сила притяжения Земли. Что же  эта за сила? Как она действует?
    Вот что я узнал из изученной литературы. Чтобы оттолкнуться от Земли, на ракету должна воздействовать сила противодействия. Она основана на принципе реактивного движения.
    Цели работы:
    познакомиться с  принципами реактивного движения
    узнать, как ракета может оттолкнуться от Земли
    выявить, где в природе и повседневной жизни встречается реактивное движение.
    Чтобы подтвердить или опровергнуть мою гипотезу, я поставил перед собой задачи:
    1) прочитать научно – популярную литературу о реактивном движении,
    2) провести опыты, иллюстрирующие реактивное движение.
    I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.
    Где впервые использовали реактивное движение? (вопрос жюри) Применялось еще при изготовлении первых пороховых фейерверочных и сигнальных ракет в Китае в X веке. В конце XVIII века индийские войска в борьбе с английскими колонизаторами использовали боевые ракеты на чёрном дымном порохе. В России пороховые ракеты были приняты на вооружение в начале XIX века.
    Во время Великой Отечественной войны советские войска с большим успехом использовали установки залпового огня «Катюша», немецкие войска применяли баллистические ракеты «Фау-2», обстреливая английские и бельгийские города.
    Учёные  разных эпох работали над этой проблемой. Большую роль  в развитии данной темы  сыграли:
    первым применить реактивное движение для полетов в космос предложил Н. И. Кибальчич;
    дальнейшая теоретическая разработка ракетоплавания принадлежит русскому ученому Циолковскому К.Э. Он первым предложил использовать в качестве ракетного топлива жидкий кислоролод. Его труды вдохновили русского конструктора и изобретателя С. П. Королёва на создание летательных аппаратов для полета человека в космос. Благодаря его идеям, впервые в мире был осуществлен запуск искусственного спутника Земли   (4 октября 1957 года) и первого пилотируемого искусственного спутника Земли с летчиком – космонавтом на борту Ю.А. Гагариным                         (12 апреля 1961 года).
    ФИЗИЧЕСКИЕ ПРИНЦИПЫ РЕАКТИВНОГО ДВИЖЕНИЯ И УСТРОЙСТВО РАКЕТЫ
    Реактивное движение основано на принципе действия и противодействия: если одно тело воздействует на другое, то при этом на него самого будет действовать точно такая же сила, но направленная в противоположную сторону.
    Современная космическая ракета это очень сложный и тяжелый летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Она состоит из рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива) и конечной “сухой” массы ракеты (оболочка ракеты, т. е. системы жизнеобеспечения космонавтов, аппаратура и т. д.). Для достижения космических скоростей применяют многоступенчатые ракеты. Когда реактивная газовая струя выбрасывается из ракеты, сама ракета устремляется в противоположную сторону, разгоняясь до 1-й космической скорости: 8 км/с.
    Для демонстрации реактивного движения я проведу следующий опыт.
    Я сделал макет космической ракеты. В ракету поместил резиновый воздушный шарик. Надо надуть резиновый шарик и отпустить его. Мы увидим, что когда воздух начнёт выходить из шарика, ракета начнёт движение в противоположном направлении.
    В ходе опыта
    1. Я выяснил, что принцип реактивного движения это – физический закон действия и противодействия.
    2. Экспериментальным путем подтвердил зависимость скорости движения тела от массы, действующего на него другого тела.
    РЕАКТИВНОЕ ДВИЖЕНИЕ В ПРИРОДЕ
    Итак, где же в природе встречается реактивное движение? Рыбы плавают, птицы летают, звери бегают. Вроде бы все просто. Как бы не так. Хочешь есть – умей шевелиться. Не хочешь, чтобы тебя съели – умей улизнуть. Чтобы быстро передвигаться в пространстве, нужно развивать большие скорости.
    Для этого, например, морской гребешок обзавелся реактивным двигателем. Он энергично выбрасывает из раковины воду и пролетает расстояние, которое в 10-20 раз больше его собственной длины! Сальпа, личинки стрекоз, рыбы– все они используют принцип реактивного движения, для перемещения в пространстве. Осьминог развивает скорость до 50 км/час и это благодаря реактивной тяге. Он даже по суше может прогуляться, т.к. есть у него на этот случай запас воды за пазухой. Кальмар – самый крупный беспозвоночный обитатель океанских глубин передвигается по принципу реактивного движения.
    Примеры реактивного движения можно обнаружить и в мире растений. В южных странах произрастает растение под названием “бешеный огурец”. Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном со скоростью до 10 м/с  вылетает жидкость с семенами. Сами огурцы при этом отлетают в противоположном направлении. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 метров.
    В быту на примере душа на гибком шланге можно увидеть проявление реактивного движения. Стоит только пустить в душ воду, как рукоятка с распылителем на конце отклонится в противоположную вытекающим струям сторону.
    Принцип реактивного движения помогает движению пловца. Чем сильнее пловец отталкивает воду назад, тем быстрее он плывёт. Инженеры уже создали двигатель, подобный двигателю кальмара. Его называют водометом.
    ЗАКЛЮЧЕНИЕ
    1. Убедился, что реактивное движение встречается в технике, быту и природе.
    2. Теперь, зная о реактивном движении, я могу избежать многих неприятностей, например, спрыгивая с лодки на берег, стреляя из ружья, включая душ и т. д.
    Итак, я могу утверждать, что гипотеза, выдвинутая мною подтвердилась: существует сила, способная оттолкнуть ракету от Земли. Действие этой силы основано на принципе реактивного движения. Этот принцип очень распространен в природе и повседневной жизни.

  4. корпус в форме трубы с отверстием на одной стороне для истечения газов;
    топливо, сжигаемое для создания реактивной тяги.
    Рис. Строение современной космической ракеты
    Настоящая схема ракеты намного сложнее. Обычно, когда создают ракету, самое главное, что продумывают, это ее ступенчатость. Ступени в ракете содержат топливо. Когда топливо заканчивается, ступень отделяется от ракеты. Ракеты с одной ступенью – это обычно боевые ракеты и модели ракет. Для них не нужно много топлива, поэтому можно обойтись одним топливным баком. В космических ракетах используется многоступенчатая схема. Это связано с тем, что нужно огромное количество топлива, чтобы поднять ракету в космос, а увеличение массы ракеты влечет дальнейшее увеличение необходимости в топливе.
    Более конкретное строение ракеты обуславливается нуждами конструкторов. Например, для боевых ракет важна скорость и компактность, в то время как для исследователей важнее надежность и грузоподъемость. Для моделей ракет во главе угла встает простота в изготовлении и безопасность.
    В настоящее время в космонавтике используются ракеты Атлас V, Ариан 5, Протон, Дельта-4, Союз-2 и многие другие.
    Чтобы преодолеть притяжение небесного тела, ракете нужно развить определенную скорость. Эта скорость называется космической. В основном используют две космические скорости:
    первая – при которой ракета становится спутником небесного тела. Для Земли она равна примерно 8 км/с;
    вторая – при которой ракета преодолевает притяжение небесного тела. Для Земли она равна 11,2 км/с.
    . Ракетное топливо
    Ракетное топливо – это вещество, используемое в двигателе ракеты для создания реактивной тяги и ускорения ракеты.
    Топливо бывает разное. В основном в космических ракетах используется химическое топливо. При использовании этого вида топлива происходят реакции с выделением энергии, благодаря которым ракета движется.
    Жидкое химическое ракетное топливо делится на окислитель и восстановитель. Оба компонента находятся в разных баках в конструкции ракеты. Смешивание происходит в момент запуска и полета. Происходит окислительно-восстановительная реакция с выделением энергии, и ракета летит. Также существует такое понятие, как монотопливо. Это топливо, в котором окислителем и восстановителем является одно вещество. Наиболее распространенным химическим топливом является водород и его смеси с различными веществами (кислородом, фтором и т.д.)
    В качестве источника энергии в ядерном ракетном топливе используется энергия распада изотопов. Данный вид топлива слабо распространен и используется в основном в экспериментах.
    Два других типа топлива – электрореактивное и механическое – используются в моделях ракет. Электрореактивное топливо использует электроэнергию, а механическое – энергию сжатых газов.
    . Применение ракет
    Естественно, что если бы от ракет не было бы никакого толку, их бы и не изобретали. На сегодняшний день ракеты используются в таких отраслях, как:
    военном деле – ракеты-носители боевых зарядов. Ракеты «земля-земля», «земля-воздух», межконтинентальные и т.д. История этого дела началась еще до нашей эры;
    космонавтике – самая развивающаяся область ракетостроения. Множество ракет разных конструкций, начиная с 60-х годов прошлого века, а также использование ракетных двигателей в конструкции различных космических объектов, таких, как станции, спутники и т.д.;

  5. Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.
    Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
    Движение ракеты – это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.
    Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.
    Ракетные двигатели бывают на твердом или на жидком топливе.
    В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
    В жидкостно-реактивных двигателях, предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, – жидкий кислород, азотную кислоту, и др.
    Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.
    Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
    К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
    Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.
    При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.
    Так устроены прямоточные воздушно-реактивные двигатели.
    Поэтому при полетах в плотных слоях атосферы для более полного использования мощности реактивного двигателя на валу турбины устанавливают воздушный винт.

  6. Реактивное движение в природе и технике
    РЕФЕРАТ ПО ФИЗИКЕ
    Реактивное движение – движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.
    Реактивная сила возникает без какого-либо взаимодействия с внешними телами.
    Применение реактивного движения в природе
    Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.
    Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.
    Осьминог
    Каракатица
    Медуза
    Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
    Сальпа – морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
    Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.
    Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.
    Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.
    Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.
    Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
    Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.
    Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.
    Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.
    Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.
    Применение реактивного движения в технике
    В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
    В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты – бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону
    Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.
    Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести – это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
    Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.
    Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.
    Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.
    Устройство ракеты
    В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону
    В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).
    Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).
    Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощнойструей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.
    Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.
    Наиболее массивную часть ракеты, предназначенную для старта и разгона всей ракеты, называют первой ступенью. Когда первая массивная ступень многоступенчатой ракеты исчерпает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает вторая, менее массивная ступень, и к ранее достигнутой при помощи первой ступени скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости до необходимого значения и доставляет полезный груз на орбиту.
    Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»
    Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

  7. Реактивное
    движение в природе и технике

    РЕФЕРАТ ПО
    ФИЗИКЕ
    Реактивное движение – движение, возникающее при
    отделении от тела с некоторой скоростью какой-либо его части.
    Реактивная сила возникает без какого-либо
    взаимодействия с внешними телами.
    Применение
    реактивного движения в природе

    Многие из нас
    в своей жизни встречались во время купания в море с медузами. Во всяком случае,
    в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для
    передвижения пользуются реактивным движением. Кроме того, именно так
    передвигаются и личинки стрекоз, и некоторые виды морского планктона. И
    зачастую КПД морских беспозвоночных животных при использовании реактивного
    движения гораздо выше, чем у техноизобретений.
    Реактивное
    движение используется многими моллюсками – осьминогами, кальмарами,
    каракатицами. Например, морской моллюск-гребешок движется вперед за счет
    реактивной силы струи воды, выброшенной из раковины при резком сжатии ее
    створок.
    Осьминог
    Каракатица
    Медуза
    Каракатица, как и
    большинство головоногих моллюсков, движется в воде следующим способом. Она
    забирает воду в жаберную полость через боковую щель и особую воронку впереди
    тела, а затем энергично выбрасывает струю воды через воронку. Каракатица
    направляет трубку воронки в бок или назад и стремительно выдавливая из неё
    воду, может двигаться в разные стороны.
    Сальпа – морское животное с прозрачным
    телом, при движении принимает воду через переднее отверстие, причем вода
    попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как
    только животное сделает большой глоток воды, отверстие закрывается. Тогда
    продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода
    через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает
    сальпу вперед.
    Наибольший
    интерес представляет реактивный двигатель кальмара. Кальмар является самым
    крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего
    совершенства в реактивной навигации. У них даже тело своими внешними формами
    копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит
    в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется
    большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска
    он использует реактивный двигатель. Мышечная ткань – мантия окружает тело
    моллюска со всех сторон, объем ее полости составляет почти половину объема тела
    кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко
    выбрасывает струю воды через узкое сопло и с большой скоростью двигается
    толчками назад. При этом все десять щупалец кальмара собираются в узел над
    головой, и он приобретает обтекаемую форму. Сопло снабжено специальным
    клапаном, и мышцы могут его поворачивать, изменяя направление движения.
    Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз,
    кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению
    с самим животным имеет очень большие размеры, то достаточно его незначительного
    движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от
    столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в
    обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой
    вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда
    нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится
    хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.
    Если спешить
    не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные
    волны пробегают по ним спереди назад, и животное грациозно скользит, изредка
    подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо
    заметны отдельные толчки, которые получает моллюск в момент извержения водяных
    струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти
    километров в час. Прямых измерений, кажется, никто не производил, но об этом
    можно судить по скорости и дальности полета летающих кальмаров. И такие,
    оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков –
    кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий
    кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой
    стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее
    поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников –
    тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот
    стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей
    полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко
    попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота,
    на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.
    Английский
    исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной
    всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал
    на мостик яхты, возвышавшийся над водой почти на семь метров.
    Случается,
    что на корабль сверкающим каскадом обрушивается множество летающих кальмаров.
    Античный писатель Требиус Нигер поведал однажды печальную историю о корабле,
    который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его
    палубу. Кальмары могут взлетать и без разгона.
    Осьминоги
    тоже умеют летать. Французский натуралист Жан Верани видел, как обычный
    осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из
    воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в
    аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет
    реактивной тяги, но и греб щупальцами.
    Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты
    и они могут показать рекордный для лучших спринтеров класс. Сотрудники
    Калифорнийского аквариума пытались сфотографировать осьминога, атакующего
    краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при
    съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок
    длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно.
    Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в
    полметра плывет по морю со средней скоростью около пятнадцати километров в час.
    Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад,
    так как осьминог плывет задом наперед) на два – два с половиной метра.

  8. Реактивное движение в природе и технике
    РЕФЕРАТ ПО ФИЗИКЕ
    Реактивное движение — движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.
    Реактивная сила возникает без какого-либо взаимодействия с внешними телами.
    Применение реактивного движения в природе
    Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.
    Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.
    Осьминог
    Каракатица
    Медуза
    Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
    Сальпа — морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
    Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.
    Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.
    Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.
    Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.
    Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
    Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.
    Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.
    Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.
    Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.
    Применение реактивного движения в технике
    В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
    В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты — бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону
    Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.
    Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.
    Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.
    Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.
    Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.
    Устройство ракеты
    В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону
    В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).
    Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).
    Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощнойструей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.
    Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.
    Наиболее массивную часть ракеты, предназначенную для старта и разгона всей ракеты, называют первой ступенью. Когда первая массивная ступень многоступенчатой ракеты исчерпает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает вторая, менее массивная ступень, и к ранее достигнутой при помощи первой ступени скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости до необходимого значения и доставляет полезный груз на орбиту.
    Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»
    Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

  9. Важным случаем практического применения закона сохранения импульса являются реактивный движение.
    Реактивное движение — это движение, которое возникает при отделении от тела некоторой его части с определенной скоростью.
    Реактивное движение, например, выполняет ракета. Особенностью этого движения является то, что тело может ускоряться и тормозить без какой-либо внешней взаимодействия с другими телами. Продукты сгорания при вылет получают относительно ракеты некоторую скорость. Согласно закону сохранения импульса, сама ракета получает такой же импульс, как и газ, но направлен в другую сторону. Закон сохранения импульса нужен для расчета скорости ракеты.
    Реактивное движение присущ медузам, кальмаров, осьминогов и другим живым организмам. В технике он используется на речном транспорте (катер с водометным двигателем), в авиации, космонавтике, военном деле.
    Реактивная техника позволила заглянуть человеку в глубины космоса. Впервые идею использования реактивного движения для космических полетов предложил ученый-инженер Николай Кибальчич.
    Значительный вклад в разработку теории космической техники сделал русский ученый Константин Эдуардович Циолковский и украинский — Юрий Кондратюк. Впервые космический корабль с человеком на борту был запущен в Советском Союзе в 1961 году.

  10. Нрав у личинки стрекозы-коромысла, или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса. Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения, личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

    Реактивные импульсы нервной «автострады» кальмаров

    Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени, необходима повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель. Такая большая проводимость возможна при большом диаметре нерва.
    Известно, что у кальмаров самые крупные в животном мире нервные волокна. В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с. А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм. Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч.
    Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает, – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»
    Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой».
    Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м, включая длину щупалец).
    Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м).

    Реактивный двигатель кальмара

    Реактивное движение, используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам. Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров. Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу 😉

  11. Специальная средняя сменная школа №10
    ученик 11-го класса
    Задворошный Владислав Михайлович
    Реферат по физике на тему:
    «Реактивное движение»
    К. Э. Циолковский
    г. Санкт-Петербург
    2002 г.
    Содержание. Реактивное движение————————————————————— стр.3
    Межконтинентальная баллистическая ракета——————————— стр.6
    Заключение————————————————————————— стр.8
    Список использованной литературы——————————————– стр.8
    Реактивно движение.
    В течение многих веков человечество мечтало о космических по­лё­тах. Писатели-фантасты предлагали самые разные средства для дости­же­ния этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рас­сказа добрался до Луны в же­лезной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А ба­рон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
    Но ни один учёный, ни один писатель-фантаст за многие века не смог на­звать единственного находящегося в распоряжении чело­ве­ка средства, с помощью которого можно преодолеть силу земного при­тяжения и улететь в космос. Это смог осуществить русский учё­­­ный Константин Эдуардович Циолковский (1857-1935). Он показал, что единственный аппарат, спо­соб­ный преодолеть силу тяжести – это ракета, т.е. аппарат с реактивным двига­телем, ис­поль­зующим горючее и окислитель, находящиеся на самом аппа­рате.
    Законы Ньютона позволяют объяснить очень важное меха­ническое явление — реактивное движение. Так называют движе­ние тела, возникающее при отделении от него с какой-либо ско­ростью некоторой его части.
    Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактив­ное движение.
    По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60—70 км/ч. Аналогичным образом пере­мещаются медузы, каракатицы и некоторые другие животные.
    Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды «бешеного» огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами; сами огурцы при этом отлетают в противоположном направлении.
    Реактивное движение, возникающее при выбросе воды, можно наблюдать на следующем опыте. Нальем воду в стеклянную во­ронку, соединенную с резиновой трубкой, имеющей
    Г – образный наконечник (см. рисунок). Мы увидим, что, когда вода начнет выли­ваться из трубки, сама трубка придет в движение и отклонится в сторону, противоположную направлению вытекания воды.
    На принципе реактивного движе­ния основаны полеты ракет. Совре­менная космическая ракета пред­ставляет собой очень сложный лета­тельный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна. Она складывается из массы рабочего тела (т. е. раска­ленных газов, образующихся в ре­зультате сгорания топлива и выбра­сываемых в виде реактивной струи) и конечной или, как говорят, «су­хой» массы ракеты, остающейся после выброса из ракеты рабочего тела.
    «Сухая» масса ракеты, в свою очередь, состоит из массы конструк­ции (т. е. оболочки ракеты, ее дви­гателей и системы управления) и массы полезной нагрузки (т. е. науч­ной аппаратуры, корпуса выводимого
    на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля).
    По мере истечения рабочего тела осво­бодившиеся баки, лишние части оболочки и т. д. начинают обременять ракету ненуж­ным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей при­меняют составные (или многоступенчатые) ракеты (см. рисунок). Сначала в таких ракетах работают лишь блоки первой ступени 1. Когда запасы топлива в них кончаются, они отделяются и включается вторая ступень 2; после исчерпания в ней топлива она также отделяется и включается третья ступень 3. Находящийся в головной части ракеты спут­ник или какой-либо другой космический аппарат укрыт головным обтекателем 4, обтекаемая форма которого способствует уменьшению сопротивления воздуха при по­лете ракеты в атмосфере Земли.
    Когда реактивная газовая струя с боль­шой скоростью выбрасывается из ракеты, сама ракета устремляется в противополож­ную сторону. Почему это происходит?
    Согласно третьему закону Ньютона, си­ла F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F’, с которой рабочее тело действует на корпус ракеты:
    F’ = F.
    Сила F’ (которую называют реактивной силой) и разгоняет ракету.
    Из этого равенства следует, что со­общаемый телу импульс равен произве­дению силы на время ее действия. Поэ­тому одинаковые силы, действующие в течение одного и того же времени, сооб­щают телам равные импульсы. В дан­ном случае импульс mрvр, приобретае­мый ракетой, должен быть равен импульсу ­выброшенных газов:
    Отсюда следует, что скорость ракеты
    Проанализируем полученное выражение. Мы видим, что скорость ракеты тем боль­ше, чем больше скорость выбрасываемых газов и чем больше отношение массы ра­бочего тела (т. е. массы топлива) к конеч­ной («сухой») массе ракеты.
    Эта формула является приближен­ной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты впервые была получена в 1897 г. К. Э. Циолковским и потому носит его имя.
    Формула Циолковского позволяет рас­считать запасы топлива, необходимые для сообщения ракете заданной скорости. В таблице приведены отношения началь­ной массы ракеты то к ее конечной массе т, соответствующие разным скоростям ракеты при скорости газовой струи (относи­тельно ракеты) V = 4 км/с.
    Vр, КМ/С
    M0/m
    vp, км/с
    m0/m
    Vр, КМ/С
    m0/m
    4
    2,7
    16
    55
    28
    1100
    8
    7,4
    20
    148
    32
    2980
    12
    20,1
    24
    403
    36
    8100
    Например, для сообщения ракете скорости, превышающей ско­рость истечения газов в 4 раза (V р=16 км/с), необходимо, чтобы начальная масса ракеты (вместе с топливом) превосходила конеч­ную («сухую») массу ракеты в 55 раз (то/т = 55). Это означает, что львиную долю от всей массы ракеты на старте должна состав­лять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу.
    Важный вклад в развитие теории реактивного движения внес современник К. Э. Циолковского русский ученый И. В. Мещер­ский (1859—1935). Его именем названо уравнение движения тела с переменной массой.
    Реактивный двигатель-это двигатель, преобразующий хими­че­с­кую энер­гию топлива в кинетическую энергию газовой струи, при этом дви­га­тель при­обретает скорость в обратном направлении. На каких же прин­ципах и физических законах основывается его действие?
    К
    аждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов соз­даёт реактивную силу, благодаря которой может быть обеспечено дви­жение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из закона сохранения импульса, который гласит, что геометрическая (т.е. векторная) сумма импульсов тел, составляющих зам­кнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы, т.е.
    К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
    Здесь vmax – максимальная скорость ракеты, v0 – начальная скорость, vr – скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса при­ходится на горючее, и какая – на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
    Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
    Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше ско­рость истечения газов и чем больше число Циолковского.
    ^ Баллистическая ракета1.
    Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него   приборы управления, баки и, на­конец, двигатель. В зависимости от топлива стартовый вес ракеты пре­вышает вес полезного груза в 100-200 раз! Поэтому весит она много де­сят­ков тонн, а в длину достигает высоты десятиэтажного дома.
    ^ Рис.1 Схема внутреннего устройства ракеты.
    Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе – предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О. Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэ­то­му рули плохо управляют. А там, где ракета приобретает большую ско­рость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
    Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще.
    В настоящее время двигатели баллистических ракет преи­му­щест­вен­но работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей – азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение.
    Наиболее ответственной частью ракеты является двигатель, а в нём – камера сгорания и сопло. Здесь должны использоваться особо жаропроч­ные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500ОС. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет го­рючее из баков и гонит его в камеру сгорания.
    Запускается баллистическая ракета со специального стартового ус­т­рой­ства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает.
    Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопро­тив­ле­ние воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд – преждевременно взорваться.
    Заключение.
    От себя добавлю, что данное мной описание работы меж­кон­тинен­таль­ной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллисти­чес­кой ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.
    Список использованной литературы:
    Дерябин В. М. Законы сохранения в физике. – М. : Просвещение, 1982.
    Гельфер Я. М. Законы сохранения. – М. : Наука, 1967.
    Кузов К. Мир без форм. – М. :Мир, 1976.
    Детская энциклопедия. – М. : Издательство АН СССР, 1959.
    С. В. Громов, Н. А. Родина. Физика – М. : Просвещение, 2001.
    1 Соответствует уровню развития науки и техники 60-х годов (см. заключение).

  12. Г.Лобня, 10 «В» класса,
    Степаненко Инна Юрьевна
    2006г.
    Реактивное движение.
    В течение многих веков человечество мечтало о
    космических по­лё­тах. Писатели-фантасты предлагали самые разные средства для
    дости­же­ния этой цели. В XVII веке появился рассказ французского
    писателя Сирано де Бержерака о полёте на Луну. Герой этого рас­сказа добрался
    до Луны в же­лезной повозке, над которой он всё время подбрасывал сильный
    магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не
    достигла Луны. А ба­рон Мюнхгаузен рассказывал, что забрался на Луну по стеблю
    боба.
    Но ни один учёный, ни один писатель-фантаст за многие
    века не смог на­звать единственного находящегося в распоряжении чело­ве­ка
    средства, с помощью которого можно преодолеть силу земного при­тяжения и
    улететь в космос. Это смог осуществить русский учё­­­ный Константин
    Эдуардович Циолковский(1857-1935)
    . Он показал, что единственный аппарат,
    спо­соб­ный преодолеть силу тяжести – это ракета, т.е. аппарат с реактивным
    двига­телем, ис­поль­зующим горючее и окислитель, находящиеся на самом аппа­рате.
    Реактивный двигатель-это двигатель, преобразующий хими­че­с­кую энер­гию
    топлива в кинетическую энергию газовой струи
    , при этом дви­га­тель при­обретает
    скорость в обратном направлении. На каких же прин­ципах и физических законах
    основывается его действие?
    Каждый знает, что выстрел из ружья сопровождается
    отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с
    одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов
    соз­даёт реактивную силу, благодаря которой может быть обеспечено дви­жение как
    в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем
    большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из
    закона сохранения импульса, который гласит, что геометрическая (т.е.
    векторная) сумма импульсов тел, составляющих зам­кнутую систему, остаётся
    постоянной при любых движениях и взаимодействиях тел системы,
    т.е.
    К. Э. Циолковский вывел формулу, позволяющую
    рассчитать максимальную скорость, которую может развить ракета. Вот эта
    формула:
    Здесь vmax – максимальная скорость ракеты, v0 – начальная скорость, vr
    – скорость истечения газов из сопла, m – начальная масса топлива, а M –
    масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость
    зависит в первую очередь от скорости истечения газов из сопла, которая в свою
    очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем
    выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое
    калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует
    также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е.
    от того, какая часть её веса при­ходится на горючее, и какая – на бесполезные
    (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
    Эта формула Циолковского является фундаментом, на котором
    зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты
    в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
    Основной вывод из этой формулы состоит в том, что в
    безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше ско­рость
    истечения газов и чем больше число Циолковского.



  13. Медуза
    Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
    Сальпа – морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.
    Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.
    Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.
    Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.
    Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.
    Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
    Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.
    Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.
    Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.
    Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.
    Применение реактивного движения в технике
    В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.
    В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты – бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону
    Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.
    Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести – это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *