Сочинение на тему теплопроводность

6 вариантов

  1. Введение
    С давних времен и до сегодняшнего дня люди задаются вопросом, как сохранить тепло. Проблемы поддержания температурного режима в доме, проблемы, связанные с теплой одеждой и посудой, наиболее часто становились причиной различных болезней, плохого питания и неспособности противостоять природным условиям. Решение этих проблем напрямую связано с теплопроводностью. Человеку важно знать, из какого материала состоит тот или иной предмет, понимать, от чего зависит его теплопроводность и быть готовым к его реакции в разных температурных условиях. В данной работе мы постараемся разобраться в этом, а также ответить на вопрос, почему некоторые предметы имеют хорошую теплопроводность, а некоторые совсем не проводят тепло?
    Объектом исследования является явление теплопроводности.
    Предметом исследования являются кухонная посуда, строительные материалы, ткани, снег.
    Цель работы заключается в экспериментальном изучении теплопроводности тканей, кухонной посуды, строительных материалов и снега.
    Для достижения поставленной цели необходимо решить следующие задачи:
    Изучить информацию о теплопроводности;
    Исследовать теплопроводность различных веществ и материалов;
    Объяснить наблюдаемые явления, основываясь на физических законах;
    Представить свои примеры теплопроводности;
    Описать роль теплопроводности в повседневной жизни и в строительстве.
    Основными методами исследования являются:
    Изучение литературы по теплопроводности материалов;
    Проведение экспериментов по изучению теплопроводности;
    Анализ полученных результатов.
    Актуальность данной работы заключается в том, что она может стать полезным источником для изучения теории на уроках физики, а также пробудить в учениках интерес и любовь к физике. Кроме того, данная работа представляет собой первые шаги на пути к серьезным открытиям в сфере теплопроводности, способным изменить нашу жизнь в лучшую сторону.
    Глава 1. Из истории открытия теплопроводности Явление теплопередачи
    В современной жизни материальный комфорт в каждом доме связан с тепловыми явлениями. Без теплоты в доме, без посуды, удерживающей тепло, без теплой одежды зимой и без многого другого сейчас невозможно представить жизнь. В древности люди тоже не могли обойтись без теплой одежды и предметов быта. Поэтому многие ученые и философы начали интересоваться тепловыми явлениями еще в древние времена.
    Явление теплопередачи изучалось несколько веков. Но, ни в древности, ни в средние века оно не было изучено до конца. Были лишь простые и единые описания теплопередачи. Ученые утверждали, что если температура вещества повышается, то оно получает теплоту, а если температура понижается, то вещество выделяет теплоту в окружающую среду.
    На протяжении многих веков ученые изучали тепловые явления, однако их деятельность получила развитие только в XVIII веке благодаря изобретенному Галилеем термометру. Первые исследования с помощью термометра были посвящены калориметрии – методу измерения количества теплоты, изучению теплового расширения тел, явлений теплопроводности. Поэтому, можно считать, что основные понятия о теплоте появились именно в XVIII веке.
    В сочинении «Мемуары о теплоте» ученые Антуан Лавуазье (1743-1794) и Пьер Лаплас (1749-1827) рассказали о развитии учения о теплоте, понятии температуры, количестве теплоты и о теплоемкости. Благодаря французским ученым явление передачи тепла начало активно изучаться, и появилось множество работ, посвященных изучению теплоты.
    Одна из значимых работ появилась в 1701 году и была посвящена вопросам теплоты. В работе Ньютон сформулировал закон охлаждения тел. В законе говорилось о том, что температура тела уменьшается пропорционально по мере охлаждения, приближаясь к температуре окружающей среды. Выяснилось, что скорость охлаждения зависит от параметра k=αAC (коэффициента теплопроводности). Ньютон доказал, что с увеличением коэффициента k, тело будет охлаждаться быстрее (Рис.1 – «Изменение коэффициента теплопроводности»).
    Дальнейшие исследования передачи теплоты показали, что процесс охлаждения осуществляется различными способами, которые имеют разную физическую силу. Так возникли излучение теплопроводности и тепловое излучение. Эти два самостоятельных направления отличаются друг от друга тем, что тепловое излучение может осуществляться даже в полном вакууме, а излучение теплопроводности нет, также первое не требует прямого контакта при теплопередаче, а для второго оно необходимо. При теоретическом анализе, основанного на законе охлаждения Ньютона, произошли некоторые трудности, но Фурье сформулировал, что поток тепла пропорционален разности градиенту температуры, таким образом, он сформулировал закон теплопроводности. Закон Фурье показывает, что количество теплоты Q, проходящее через площадку S, за время T, вдоль направления X определяется по формуле:
    где dT/dx – изменение температуры на единицу длины, k – коэффициент теплопроводности.
    Рис.1 – «Изменение коэффициента теплопроводности»
    В 1744 – 1745 годах появилось утверждение о том, что тепловые явления обусловлены движением молекул тела. Данное утверждение высказал М.В. Ломоносов в своих «Размышлениях о причине теплоты и холода». Однако предположения Ломоносова расходились с действующими в то время теориями о теплоте. Поэтому, чтобы отличие взглядов Ломоносова и теорий теплоты стало очевидным, обратимся к XVIII столетию и представлениям о теплоте того времени. Теплоту представляли в виде невесомой и невидимой жидкости, которая впитывает поры тела. Жидкость, которая является невидимой и невесомой одновременно назвали теплородом.
    В конце XVIII века английский физик Румфорд доказал правильность идеи Ломоносова. К такому выводу Румфорд пришел, когда наблюдал за изготовлением пушек. Он обратил внимание на то, что при сверлении ствола пушки сверло сильно нагревается. Это означало, что при трении тела нагреваются. Данное явление было известно еще в начале истории человечества. Древние люди с помощью трения добывали огонь, но они не смогли увидеть за этим явлением закон природы. Румофорд стал первым исследователем, кому это оказалось посильным. При наблюдении за сверлением ствола пушки у физика появился вопрос: отчего происходит нагревание тела? Не происходит ли нагревание оттого, что металлические опилки, полученные при сверлении, обладают меньшей теплоемкостью, чем сам ствол пушки? Ответ заключается в том, что количество теплоты металла при переходе в опилки может уместиться в них, только если будет повышение температуры.
    Когда появилось предположение о том, что теплоемкость сплошного металла и теплоемкость опилок одинаковы, то оказалось, что объяснения Румфорда о нагревании металла неверно. Тогда Румфорд предположил, что теплота входит в изделие из воздуха. В доказательство физик залил водой рассверливаемый ствол пушки. Получилось так, что вода нагрелась и даже закипела. Значит и первое, и второе объяснения являются верными. Узнав свою правоту Румфорд заявил: «для того чтобы получить теплоту в неограниченном количестве, достаточно продолжить сверлить, при этом теплоту нельзя считать теплородом». Поэтому все тепловые явления следует рассматривать как движение.
    Глава 2. Теплопроводность 2.1. Определение теплопроводности
    Различают три вида теплопередачи: конвенция, излучение и теплопроводность. Конвенция – процесс передачи тепла движущими массами жидкости и газа. Тепловое излучение – перенос тепла в газообразной середе или вакууме в виде электромагнитных волн. Теплопроводность – способность материалов передавать через свою толщину тепловой поток. Тепловой поток возникает из-за разности температур на противоположных поверхностях.
    Мы остановимся на третьем виде теплопередачи и узнаем о теплопроводности немного больше. Теплопроводность больше проявляется в сплошных твердых телах, а также теплопроводность находится и в капельках жидкостях и газах. В твердых материалах основным видом теплообмена является теплопроводность. Теплопроводность материалов зависит от средней плотности и химико-минерального состава, влажности, структуры и средней температуры материала. Известно, что чем меньше средняя плотность материала, тeм ниже его теплопроводность. Тeплопроводность увеличивается тогда, кoгда увеличивается влажность материала. Рaзличные материалы имеют разную теплопроводность, одни медленно проводят теплоту, другие – быстрeе. Поэтому и количественный показатель теплопроводности – коэффициент теплопроводности (λ (лямбда)) – бyдeт y всех материалов свой. С увеличением плотности, влажности и температуры материала повышается λ. Коэффициент теплопроводностизaвисит oт плотности, влaжности, тeмпературы и cтруктуры материала.
    2.2. Суть теплопроводности
    Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности стремиться сделать температуру всего тела одинаковой. Теплопроводность – это свойство тел проводить тепло, основанное на теплообмене, которое происходит между атомами и молекулами тела. Однако, при теплопроводности не происходит перенос вещества от одного конца тела к другому. Все потому, что у жидкостей теплопроводность небольшая. Газы тоже имеют маленькую теплопроводность.
    Теплопроводность жидкости намного меньше теплопроводности твердого тела. Это зависит от молекул, которые наводятся в том или ином теле и от плотности. Жидкости имеют маленькую теплопроводность из-за того, что молекулы в ней расположены далеко друг от друга, в отличие от молекул твердого тела. Плотность газа меньше плотности жидкости, следовательно, молекулы газа находятся на большом расстоянии друг от друга, а это значит, что газы имеют теплопроводность меньше, чем любые жидкости.
    Плохой теплопроводностью обладают не только газы и жидкости, но и волосы, шерсть, перья и бумага. Известно, что между волокнами этих веществ расположен воздух, а это преграда для передачи тепла. Поэтому шерсть обладает плохой теплопроводностью, а значит, что она не пропускает холод и способна удерживать тепло, поэтому в мороз смело можно надевать шерстяную кофту и не волноваться о том, что можно замерзнуть. Теперь нам известно, что благодаря плотно соединенным шерстяным волоскам кофта обладает плохой теплопроводность и не пропускает холод.
    Глава 3. Экспериментальные работы по изучению и созданию теплопроводности различных материалов
    В России в зимнее время года, температура на улице становится все ниже. Известно, что самые холодные зимы именно в нашей стране. Однако низкие температуры не останавливают отважных ребят, которые, несмотря на мороз, выходят слепить снеговиков и покататься на санках. В некоторых случаях через определенное время дети жалуются на озябшие руки и ноги. В то же время другие ребята продолжают играть и веселиться, несмотря на холод. Нам стало интересно, почему некоторые дети в одинаковой по внешнему виду одежде замерзают, а некоторые продолжают гулять, не обращая внимания на мороз. Мы попробовали разобраться в этом и изучить свойства различных тканей с точки зрения физики. Чтобы решить проблему с теплой одеждой, нам необходимо исследовать некоторые виды тканей на теплопроводность.
    Опыт №1 Изучение теплопроводности тканей
    Необходимые приборы и материалы:
    Лед 2х4х2 см.
    Полиэтиленовые пакетики 7х5 см.
    Термометр
    Флисовая ткань10х10 см.
    Синтетическая ткань 10х10 см.
    Фланелевая ткань 10х10 см.
    а
    б
    Хлопковая ткань 10х10 см.
    Рис.2 – «Изучение теплопроводности тканей»
    Болоньевая ткань 10х10 см.
    Трикотажная ткань 10х10 см.
    Ход работы:
    Подготовить лед и кусочки ткани одинакового размера.
    Положить лед в полиэтиленовые пакетики и обернуть различными кусочками ткани (Рис.2а;б– «Изучение теплопроводности тканей»).
    Завязать ткани со льдом так, чтобы воздух не попадал внутрь ткани.
    Через 1 час измерить температуру льда во всех пакетиках с тканью.
    Табл.1 – «Теплопроводность тканей»
    Спустя 1 час лед во всех тканях растаял. Только в пакетике с флисовой тканью (№2) остался лед. Это означает, что флисовая ткань не пропускает тепло и обладает плохой теплопроводностью, а значит, во флисовой одежде зимой замерзнешь намного позже, чем, например, в болоньевой. Любая ткань в своем составе имеет волокна с воздухом, которые способные удерживать тепло. Если волокна с воздухом далеко расположены друг от друга, то ткань будет пропускать тепло. Если же волокна расположены близко, ткань наоборот будет удерживать тепло.

    Ткань
    Температура льда, °С
    Температура воды, °С спустя час
    1
    Синтетическая
    -8
    +13,5
    2
    Флисовая
    -8
    +9,4
    3
    Хлопковая
    -8
    +11,2
    4
    Болоньевая
    -8
    +12,3
    5
    Фланелевая
    -8
    +15,4
    6
    Трикотажная
    -8
    +14,7
    Из приведенной таблицы (Табл.1 – «Теплопроводность тканей») видно, что наименьшая температура воды (+9,4°С) сохранилась у флисовой ткани. Затем, по мере повышения температуры воды в ткани идет хлопковая ткань (+11,2 °С), болоньевая (+12,3°С), синтетическая (+13,5°С). Высокой теплопроводностью обладают трикотажная (+14,7°С) и фланелевая (+15,4°С) ткани.
    Рис.3 – «Изменение температуры льда»
    Любая ткань в своем составе имеет волокна с воздухом, которые способные удерживать тепло. Если волокна с воздухом далеко расположены друг от друга, то ткань будет пропускать тепло. Если же волокна расположены близко, ткань наоборот будет удерживать тепло.
    Теплопроводность тканей можно выразить графически. Для этого начертим график зависимости (Рис.3 – «Изменение температуры льда») температуры (t,°С) от времени (Т, мин.).
    Опыт № 2 Изучение теплопроводности кухонной посуды
    Необходимые приборы и материалы:
    Термометр
    Кастрюля из нержавеющей стали
    Эмалированная кастрюля
    Чугунная кастрюля
    Вода 54°С
    Рис.4 – «Теплопроводность кухонной посуды»
    Ход работы:
    Налить воду одинаковой температуры во все кастрюли и закрыть их (Рис.4 – «Теплопроводность кухонной посуды»).
    Измерить начальную температуру воды и стенок кастрюль, записать температуры.
    Через 5 минут заново измерить температуру стенок и воды.
    Измерять температуры на протяжении 1 часа, через каждые 5 минут.
    Табл.2 – «Температура стенок кастрюли»
    Мы измеряли температуру стенок кастрюль и записали полученные результаты в таблицу (Табл.2 – «Температура стенок кастрюли»), из которой видно, что температура стенок чугунной кастрюли не изменялась на протяжении 25 минут. Температура стенок эмалированной кастрюли на протяжении 20 минут не изменялась. Температура стенок кастрюли из нержавейки сразу начала снижаться. Это значит, что кастрюля из нержавейки имеет хорошую теплопроводность и не способна хорошо удерживать тепло.

    Материал кастрюли
    Начальная тем-ра стенок, °С
    Температура стенок через:
    5
    10
    15
    20
    25
    30
    35
    40
    60
    1
    Нержавейка
    39
    38,5
    35
    34,2
    33,1
    32,7
    32,1
    31,8
    31
    31
    2
    Эмаль
    34
    33,5
    32,2
    32,2
    32
    31,4
    31,4
    31
    29,7
    28
    3
    Чугун
    33
    33
    33
    33
    33
    33
    32,6
    32,4
    32,2
    32
    Табл.3 – «Температура воды»
    Также мы измеряли температуру воды в разных кастрюлях на протяжении 2 часов. Результаты опыта мы записали в таблицу (Табл.3 – «Температура воды»), из которой видно, что температура воды в кастрюле из нержавейки снижалась постепенно. Температура воды в чугунной кастрюле начала снижаться сразу.

    Материал кастрюли
    Начальная тем-ра воды, °С
    Температура воды через:
    15
    20
    25
    30
    60
    120
    1
    Нержавейка
    54
    49,6
    47,8
    46,5
    45,3
    43,2
    38,2
    2
    Эмаль
    54
    48,3
    47,1
    44,5
    44,2
    41,8
    36,1
    3
    Чугун
    54
    45
    44
    42,6
    42
    40,2
    33,4
    Проанализировав две таблицы, можно сказать, что температура стенок чугунной кастрюли почти не изменилась, но температура воды сразу начала снижаться. Это говорит о том, что вода, находящаяся в кастрюле, нагревает ее, чтобы не позволить пройти воздуху и остудить воду. Поэтому если температура стенок кастрюли из нержавейки быстро снижаться, а температура воды остается прежней, то нержавеющий материал обладает хорошей теплопроводностью и не способен удержать тепло на долгое время.
    Теплопроводность различных материалов, из которых сделаны кастрюли можно выразить графически, построив график зависимости (Рис.5 – «Изменение температуры стенок кастрюль») температуры стенок (t,°С) от времени (Т, мин.).
    Рис.5 – «Изменение температуры стенок кастрюли»
    Снижение температуры воды в кастрюлях из разных материалов можно выразить графиком зависимости (Рис.6 – «Изменение температуры воды в кастрюлях») температуры воды (t,°С) от времени (Т, мин.).
    Рис.6 – «Изменение температуры воды в кастрюлях»
    Опыт № 3 Изучение теплоизоляционных свойств снега
    Фермеры часто задаются вопросом о том, как повысить переносимость живыми организмами и растениями низкой температуры в зимний период. Коэффициент теплопроводности снега примерно в 10 раз меньше, чем коэффициент теплопроводности почв. И в 10 раз больше коэффициента теплопроводности воздуха. Если снег рыхлый, то воздух заполняет промежутки между кристаллами снега и быстрее остужает почву, чем липкий снег. Кроме того, температура почвы под снегом зависит от толщины снежного покрова. Поэтому, чем больше толщина снежного покрова, тем медленнее изменяется температура почвы под снегом.
    Необходимые приборы и материалы:
    Термометр
    Линейка
    Рис.7 – «Измерение температуры снега»
    Ход работы:
    Измерить температуру на поверхности снега (Рис.7 – «Измерение температуры снега»).
    Измерить толщину снежного покрова.
    Измерить температуру на поверхности почвы под снегом.
    Рассчитать разность температур.
    Сравнить теплопроводность снега и температуру почвы при разной толщине снежного покрова.
    Табл.4 – «Температура снега»
    Записать полученные результаты в таблицу.
    Толщина снежного покрова, см
    Температура, °С
    Разница температур, °С
    На поверхности снега
    На поверхности почвы под снегом
    3
    -13
    -10
    3
    8
    -18
    -7
    11
    15
    -20
    -6
    14
    20
    -24
    -5
    19
    60
    -26
    -2
    24
    На протяжении 2-х недель мы измеряли толщину и температуру снега, и температуру почвы под снегом. Полученные результаты мы записали в таблицу (Табл.4 – «Температура снега»), из которой видно, что чем больше толщина снега, тем выше температура почвы под снегом. Это говорит о том, что температура почвы под снегом также зависит от толщины снега.
    Опыт №4 Изучение теплопроводности строительных материалов
    В строительстве часто используют теплозащитные материалы. Теплозащитными называют строительные материалы и изделия, для тепловой защиты конструкций зданий и cооpyжений. Основной особенностью подобных материалов являются малая или средняя плотность и низкая теплопроводность. Мы решили узнать, какие строительные материалы имеют плохую теплопроводность и способны сохранять тепло в доме.
    Необходимые приборы и материалы:
    Измеритель теплопроводности материалов МИТ-1
    Пенопласт
    Пеноплекс
    Бетон
    Рис.8 – «Измерение теплопроводности пеноплекса»
    Дерево
    Кирпич
    Ход работы:
    Подключить МИТ-1 к источнику питания.
    Сделать отверстие в материалах диаметром 6мм.
    Вставить измерительный зонд МИТ-1 исследуемые материалы (Рис.8 – «Измерение теплопроводности пеноплеска»).
    Снять показания.
    Записать полученные результаты в таблицу.
    Табл.5 – «Теплопроводность строительных материалов»

    Материал
    Теплопроводность, Вт/мК
    1
    Пенопласт
    0,0446
    2
    Пеноплекс
    0,0507
    3
    Дерево
    0,0787
    4
    Бетон
    1,055
    5
    Кирпич
    1,095
    Из полученной таблицы (Табл.5 – «Теплопроводность строительных материалов») видно, что наименьшей теплопроводностью обладает пенопласт (0,0446Вт/мК), значит, пенопласт способен долго удерживать тепло. Именно поэтому в строительстве пенопласт часто используют для обшивки домов. Хорошей теплопроводностью обладают бетон (1,055Вт/мК) и кирпич (1,095Вт/мК), это говорит о том, что бетон и кирпич плохо сохраняют тепло. Поэтому материалы, обладающие хорошей теплопроводностью, используют только для строительства домов.
    Заключение
    Подводя итоги исследования теплопроводности тканей, кухонной посуды, строительных материалов, снега, можно сделать следующие выводы:
    Результаты исследования теплопроводности показывают, что чем лучше теплопроводность, тем хуже материал удерживает тепло. Если теплопроводность плохая, значит материал хорошо удерживает тепло и не пропускает холод.
    Изучение теплопроводности доказывает, что теплопроводность вещества зависит от его агрегатного состояния. У твердых тел теплопроводность будет больше, чем у жидкостей или газов.
    Теплопроводность тканей зависит от молекул, которые входят в состав тканей. Ткани, имеющие в своем составе молекулы, расположенные далеко друг от друга, имеют теплопроводность лучше, чем ткани с составом молекул, не имеющих воздуха между собой.
    Изучение теплопроводности снега доказывает, что рыхлый снег является плохим носителем тепла, в то время как липкий снег способен хорошо удерживать тепло и согревать землю. Как показали исследования, толщина снежного покрова играет большую роль в изменении температуры почвы.
    Изучение истории теплопроводности позволило нам узнать, что явление теплопроводности изучалось на протяжении несколько веков. Теплопроводность является одним из видов теплопередачи, в процессе которого частицы тела взаимодействуют друг с другом, стремясь сделать температуру тела одинаковой.
    Теплопроводность различных материалов широко используется в строительстве, быту и часто встречается в повседневной жизни человека. Изучение теплопроводности имеет большое значение для здоровья и комфорта человека, а также играет бoльшую рoль в создании материала, полeзного для человека. Таким образом, создание и открытие веществ, обладающих теплоизоляционными свойствами, является одним из вaжнейших задач человечества.
    Библиографический список
    Беляевский И. А. Исследование теплопроводности различных веществ// Международный школьный научный вестник. – 2017. – №1. – С.72-76
    Буховцев Б. Б., Мякишев Г. Я., Сотский Н. Н. Физика: учеб. для 10 кл. общеобраоват. учреждений: базовый и профил. уровни. – 16-е изд. – М.: Просвещение, 2007. 366с.
    Коноплева Н. К. Алюминий, нержавейка… – выбираем домашнюю кастрюлю(посуду). – URL: http://www.liveinternet.ru/users/v0va07/post201139685
    Прохоров А. М. Физичес кая энциклопедия в пяти томах. Советская энциклопедия, 1988. – 532с.
    Чуянов В. А.Энциклопедический словарь юного физика. Сост. — М.: Педагогика, 1984.— 352 с., ил.

  2. ТЕПЛОПЕРЕДАЧА В НАШЕЙ ЖИЗНИ
    Коновальцев Вадим, учащийся 4е класса МОУ «СОШ №5
    Научный руководитель:
    Васильева Е.Н.
    Саратов 2015ОГЛАВЛЕНИЕ
    Введение……………………………………………………………………………3
    Глава 1. Теплопередача и ее виды……………………………………………….4
    1.1 Что такое теплопередача…………………..…………………………………4
    1.2 Виды теплопередачи…………………………………………………………..4
    Глава 2. Применение видов теплопередачи в жизни………………………..…8
    Заключение……………………………………………………………………….10
    Информационные ресурсы…………………………………………………..….11
    Приложения
    ВВЕДЕНИЕ
    Тему этого исследования мне подсказал такой случай. Однажды, взяв в руки карандаш и ножницы, я обнаружил, что карандаш теплее ножниц. Я спросил у родителей – почему? Родители мне объяснили, что карандаш и ножницы по-разному отводят тепло от моей руки. Мне стало интересно, и я решил разобраться, почему происходит именно так.
    Цель исследования – изучить различные виды теплопередачи и их применение в нашей жизни.
    В соответствии с целью данного исследования были поставлены следующие задачи:
    1. Изучить явление теплопередачи.
    2. Рассмотреть виды теплопередачи и их применение.
    3. Провести опыты по различным видам теплопередачи.
    4. Проанализировать и обобщить полученные данные.
    Гипотезы – 1) предположим, что явление теплопередачи не имеет применения в жизни; 2) возможно, что виды теплопередачи имеют широкое применение в нашей жизни.
    Методы исследования – изучение источников информации (книги, статьи, сайты), наблюдение, эксперимент.
    Этапы работы:
    подготовительный (июнь 2014 г.) – сбор информации по теме исследования из различных источников, планирование работы;
    проведение эксперимента (июль 2014 г.) – проведение опытов по изучению видов теплопередачи, наблюдение за применение данного явления в жизни;
    подведение итогов эксперимента (август 2014 г.) – анализ собранных данных, выводы.
    ГЛАВА 1. ТЕПЛОПЕРЕДАЧА И ЕЕ ВИДЫ
    1.1 ЧТО ТАКОЕ ТЕПЛОПЕРЕДАЧА
    Процесс передачи тепла от более нагретого тела к менее нагретому называется теплопередачей [5].
    Каждый предмет может служить «мостиком», по которому перейдет тепло от тела более нагретого к телу менее нагретому. Таким «мостиком» может быть ложка, опущенная в стакан с горячим чаем. Металлические предметы очень хорошо проводят тепло. Конец ложки в стакане становится теплым уже через секунду. Если нужно перемешать какую-либо горячую смесь, то ручку у мешалки делают из дерева или пластмассы. Эти тела проводят тепло во много раз хуже, чем металлы.
    «Мостиком» для перехода тепла могут быть и жидкости. Но они проводят тепло хуже твердых тел.
    Опыт №1: В пробирке с водой находится кусочек льда. Нагреваем пробирку в верхней части. Вода закипает, а лед не тает.
    Вывод: это говорит о том, что вода плохо проводит тепло.
    Газы проводят тепло в десятки раз хуже, чем жидкости, и в тысячу раз хуже, чем твердые тела.
    Существует три вида теплопередачи: теплопроводность, конвекция, излучение (см. Схему). Рассмотрим их более подробно.
    Схема «Виды теплопередачи»
    1.2 ВИДЫ ТЕПЛОПЕРЕДАЧИ
    1) Теплопроводность – это передача тепла от одной части тела к другой. Это происходит из-за того, что молекулы, обладающие большей энергией, передают часть своей энергии соседним молекулам. В результате все тело постепенно нагревается. Само вещество при этом не перемещается [1].
    Опыт №2: нагревание металлического стержня, к которому с помощью пластилина прикреплены гвоздики. При нагревании конца стержня пламенем свечи гвоздики начинают последовательно отпадать.
    Вывод: это происходит потому, что молекулы, находящиеся у конца стержня приобретают при нагревании большую энергию и передают ее соседним молекулам. Постепенно эта энергия передается следующим молекулам и стержень нагревается.
    Различные тела обладают разной теплопроводностью.
    Опыт №3: завернуть одинаковые кусочки льда в металлическую фольгу, бумагу и вату. Примерно через 20 минут обнаружим, что в фольге растает большее количество льда, в бумаге меньшее, чем в фольге, а в вате меньшее, чем в бумаге.
    Вывод: металлы проводят тепло лучше, чем бумага и вата, находясь в одинаковых условиях. Объясняется это тем, что в металлах молекулы расположены близко друг от друга. Кроме этого в металлах имеются свободные электроны, перемещающиеся внутри вещества. Поэтому тепло передается быстро.
    Металлы обладают большой теплопроводностью.
    В бумаге расстояние между молекулами больше, поэтому передача энергии происходит медленнее. Бумага обладает меньшей теплопроводностью, чем металлы.
    Между частицами ваты находится воздух. Молекулы воздуха находятся далеко друг от друга. Поэтому передача энергии от одной молекулы к другой происходит медленнее и вата за счет этого обладает плохой теплопроводностью.
    Одинаковой ли теплопроводностью обладают различные металлы?
    Опыт №4: два металлических стержня (медный и стальной) одинакового диаметра привести в соприкосновение. К ним прикрепить на одинаковом расстоянии друг от друга пластилином гвоздики. При нагревании стержней в месте соприкосновения заметим, что гвоздики начинают раньше падать на медном стержне, чем на стальном.
    Вывод: медь обладает лучшей теплопроводностью, чем сталь. Различные металлы обладают разной теплопроводностью.
    2) Конвекция. Как было доказано выше на основании опыта, вода является плохим проводником тепла. Тогда как же она нагревается, например, в чайнике? Воздух еще хуже проводит тепло. Тогда непонятно, почему во всех частях комнаты зимой устанавливается одинаковая температура?
    Вода в чайнике быстро закипает из-за земного притяжения. Нижние слои воды, нагреваясь, расширяются, становятся легче и поднимаются вверх. А на их место поступает холодная вода. Это можно наблюдать на опыте №5: в стеклянный сосуд с водой бросим кристаллики марганца. Увидим, что при нагревании окрашенные потоки воды поднимаются вверх.
    Этот вид теплопередачи называется конвекцией. При конвекции перемещаются слои самого вещества. Теплые слои, более легкие, поднимаются вверх, а холодные, более тяжелые, опускаются вниз [1]. Постепенно вся жидкость нагревается. То же самое происходит и с воздухом.
    Опыт №6: над горящей лампой подвесим легкую бумажную вертушку. Через некоторое время вертушка начнет вращаться. Это происходит потому, что от лампы воздух около нее нагревается, расширяется, становится легким и поднимается вверх, вращает вертушку.
    3) Излучение. А как же тепло от Солнца, которое находится от Земли на расстоянии 150 млн. км, через слои безвоздушного пространства (вакуума) доходит до Земли? Оказывается, есть еще один способ теплопередачи – излучение [2]. Объяснить этот способ для меня пока сложно, так как для этого надо знать законы квантовой и волновой физики. Но я понял, что этот способ передачи тепла может осуществляться в вакууме и во всех направлениях. Например, если поднести руку к нагретому утюгу не касаясь его, то мы почувствуем тепло не только сверху (конвекция), но и сбоку. Также я узнал, что различные тела по-разному поглощают и отражают лучи Солнца [4].
    Опыт №7: в темную и светлую металлические банки наливаем одинаковое количество воды комнатной температуры. Банки ставим на подоконник, на солнечную сторону. Через некоторое время замечаем, что в темной банке вода нагревается быстрее – значит, она лучше поглощает тепло.
    Вывод: белые и блестящие поверхности хорошо отражают солнечные лучи, а темные поглощают их.
    Далее рассмотрим, как разные виды теплопередачи применяются в нашей жизни.
    ГЛАВА 2. ПРИМЕНЕНИЕ ВИДОВ ТЕПЛОПЕРЕДАЧИ В ЖИЗНИ
    В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Это можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение).батарея бат
    Различные виды теплопередачи находят широкое применение в повседневной жизни, природе и технике. Например, батареи отопления устанавливаются ближе к полу и чаще всего у окна, так как воздух, находящийся около батареи, нагревается, расширяется, становится более легким и поднимается вверх. На его место опускаются более тяжелые холодные слои воздуха. Таким образом, постепенно воздух в комнате прогревается.
    В природе благодаря явлению конвекции образуются теплые и холодные течения в океанах. Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.
    Поверхности космических кораблей, ракет, дирижаблей, воздушных шаров, спутников, самолётов окрашивают серебристой краской, чтобы они не нагревались Солнцем. Так  как светлые поверхности отражают солнечную энергию. Если наоборот надо использовать солнечную энергию, то части приборов окрашивают в темный цвет.
    Познакомившись с различными видами теплопередачи, можно многое объяснить:
    почему реки зимой не промерзают до дна;
    почему кирпичные стены дома, который строится рядом с нашим лицеем, обшивают листами пенопласта;
    почему у ТЭЦ-5 такая высокая труба;
    почему между стеклами в рамах есть воздушный зазор;
    почему летом люди стараются носить светлую одежду, а зимой шубы и пуховики;
    почему окна с южной стороны летом закрывают серебристой фольгой;
    почему у термоса внутренняя поверхность зеркальная, а между внутренним и внешним сосудами пустота;
    почему в районах вечной мерзлоты здания строят на сваях;
    почему трубы от котельной до потребителя закрывают стекловатой;
    почему люди зимой носят темные одежды (черного, синего, коричного цвета), а летом светлые (бежевые, белые цвета);
    почему в районах с жарким климатом люди носят ватные халаты и меховые шапки;
    почему звери зимой надевают более густую шубу, а птицы сидят нахохлившись;
    почему животные, не имеющие волосяного покрова, имеют толстый слой подкожного жира.
    Можно привести еще огромное количество интересных примеров применения теплопередачи в нашей жизни.
    ЗАКЛЮЧЕНИЕ
    Таким образом, теплопередачей называют процесс передачи тепла от более нагретого тела к менее нагретому. Существует три вида теплопередачи: теплопроводность, конвекция, излучение. В жизни все они чаще всего действуют одновременно. Поэтому вокруг себя мы можем наблюдать множество примеров применения разных видов теплопередачи.
    В ходе изучения этой темы стало понятно, что знания различных способов передачи тепла имеют большое значение в жизни человека. Применяя эти знания, можно многое объяснить. А ученые-технологи создают новые строительные материалы, которые хорошо защищают жилище человека от холода и воздействия атмосферных явлений.
    ИНФОРМАЦИОННЫЕ РЕСУРСЫ
    Блудов М.И. Беседы по физике. – М.: Издательство «Просвещение», 1984.
    Горев Л.А. Занимательные опыты по физике. – М.: Издательство «Просвещение», 1977.
    Дитрих А.К., Юрмин Г.А., Кошурникова Р.В. Почемучка. – М.: Педагогика-Пресс, 1993.
    Ландау Л.Д., Китайгородский А.И. Физика для всех. – М.: Издательство «Наука», 1982.
    http://уроки.мирфизики.рф

  3. Ответ оставил Гость
    Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация — все это примеры тепловых явлений. Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д. Ответить на вопрос, что такое теплота, удалось не сразу. Лишь в XVIII веке стало ясно, что все тела состоят из молекул, что молекулы движутся и взаимодействуют друг с другом. Тогда ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении — уменьшается. Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху. Из примера ясно, что тепло может передаваться от тела более нагретого к телу менее нагретому. Существует три способа передачи теплоты — теплопроводность, конвекция, излучение. Нагревание ложки в горячем чае — пример теплопроводности. Все металлы обладают хорошей теплопроводностью. Конвекцией передается тепло в жидкостях и газах. Когда мы нагреваем воду в кастрюле или чайнике, сначала прогреваются нижние слои воды, они становятся легче и устремляются вверх, уступая место холодной воде. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи поднимается, а холодный опускается. Но ни теплопроводностью, ни конвекцией невозможно объяснить, как, например, далекое от нас Солнце нагревает Землю. В этом случае тепло передается через безвоздушное пространство излучением (тепловыми лучами).

  4. Необратимость свойство реальных процессов. Статистический характер энтропии. Хаос, структура и порядок макросистем. Проблема тепловой смерти
    При соприкосновении тел процесс теплопередачи происходит самопроизвольно от горячего тела к холодному до тех пор, пока оба тела не будут иметь одинаковые температуры. Все наблюдали, как налитый в чашку горячий чай постепенно остывает, нагревая окружающий воздух. Но никто не видел, чтобы теплый чай в чашке вдруг закипел за счет охлаждения окружающего его воздуха.
    Процессы теплопередачи самопроизвольно осуществляют только в одном направлении, поэтому их называют необратимыми процессами.
    Всегда осуществляется теплопередача тепла от горячего тела к холодному, потому что равномерное распределение быстрых и медленных молекул в двух сопрягающихся телах является более вероятным, чем такое распределение, при котором в одном теле будут только «быстрые» молекулы, а в другом — только «медленные».
    Системы, состоящие из большого числа частиц, будучи предоставленные самим себе, само произвольно переходят из состояний менее вероятных в состояния более вероятные.
    Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.
    Молекулы газа стремятся к наиболее вероятному состоянию, т. е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т. е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связано с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явления, связанные с перемешиванием, с созданием хаоса из порядка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирующих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или просто радующие глаз своеобразные фигуры.
    В середине 19 века активно обсуждалась проблема тепловой смерти Вселенной. Рассматриваю Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Р.Ю. Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что все формы движения со временем должны перейти в тепловые. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т.е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безгранично развивающейся системе, как Вселенная.
    Источник электромагнитного поля связанный с материальными носителями этого свойства (например электронами и протонами), называется электрическим зарядом. Электрический заряд не зависит от системы отсчета.
    Носителями отрицательных зарядов в атоме являются электроны, носителями положительных зарядов — протоны, входящие в состав ядер, атомов. Сумма положительных и отрицательных зарядов в атоме равна нулю: заряды распределяются таким образом, что атом в целом является нейтральным.
    В природе существует два типа электрических зарядов -положительные и отрицательные. Одноименные заряды друг от друга отталкиваются, разноименные — притягиваются. Опытным путем установлено, что электрический заряд дискретен, т.е. заряд любого типа составляет целое кратное от элементарного электрического заряда е (е = 1,6 • 10-19 Кл). Электрон (те = 9,11 • 10-31кг) и протон mр=1,67 • 10-27кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.
    Закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри данной системы.
    Электрический заряд — величина релятивистски инвариантная, т.е. не зависит от системы отсчета, а значит, не зависит от того, движется данный заряд или покоится.
    Единица электрического заряда – кулон (Кл) — это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 Ампер за 1 секунду.
    Носителями зарядов в различных средах могут быть электроны (например, в металлах), ионы — частицы молекул или атомов имеющие положительные и отрицательные заряды (например в электролитах и газах), и молионы — коллоидные частицы в жидкости имеющие заряды.
    По модулю любой заряд кратен заряду электрона или протона.
    Заряд протона равен по модулю заряду электрона.
    В пространстве, окружающем электрический заряд, существует силовое поле, называемое электрическим полем, то есть электрическое поле создается электрическим зарядом. Электрическое поле, создаваемое неподвижными электрическими зарядами, принято называть электростатическим.
    Опыт показывает , что подобно тому , как в пространстве , окружающем электрические заряды, возникает электромагнитное поле , так в пространстве, окружающем токи и постоянные магниты, возникает силовое поле называемое магнитным. Магнитное поле обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты.
    В 60-х годах XIX в. английский физик Максвелл развил теорию Фарадея об электромагнитном поле и создал теорию электромагнитного поля. Это была первая теория поля. Она касается только электрического и магнитного полей и весьма успешно объясняет многие электромагнитные явления. Полезно напомнить некоторые основные идеи, лежащие в основе данной теории, и вытекающие из нее выводы.
    Из закона Фарадея(закон электро-магнитной индукции) следует, что любое изменение сцепленного с контуром магнитного потока приводит к возникновению электродвижущей силы (ЭДС) индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение ЭДС электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако ЭДС в любой цепи возникает только тогда, когда в ней на носителей тока действуют сторонние силы, т. е. силы не электростатического происхождения. Поэтому возникает вопрос о природе сторонних сил в данном случае. Опыт показывает, что такие сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение нельзя также объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Дж.Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлению Максвелла, контур, в котором появляется ЭДС, играет второстепенную роль, являясь своего рода лишь “прибором”, обнаруживающим это поле. Электрическое поле, возбуждаемое магнитным полем, как и само магнитное поле, является вихревым.
    Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в пространстве вихревое электрическое поле, то должно существовать обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения, обладающий способностью создавать в окружающем пространстве магнитное поле. Ток смещения в вакууме не связан с движением зарядов, а обусловливается только изменением электрического поля во времени и вместе с тем возбуждает магнитное поле — в этом заключается принципиально новое утверждение Максвелла.
    Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
    В стационарном случае, когда электрическое и магнитное поля не изменяются во времени, источниками электрического поля являются только электрические заряды, а источниками магнитного — только токи проводимости. В данном случае электрическое и магнитное поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.
    Уравнения Максвелла — наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.
    Долгое время считалось, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия, и передача взаимодействия происходит мгновенно. Такое предположение составляет сущность концепции дальнодействия..
    Основоположник концепции дальнодействия — французский математик физик и философ Рене Декарт. Многие ученые придерживались этой концепции вплоть до конца XIX в.
    Экспериментальные исследования электромагнитных явлений показали несоответствие концепции дальнодействия физическому опыту. Кроме того, она находится в противоречии с постулатом специальной теории относительности, в соответствии с которым скорость передачи взаимодействий тел ограничена и не должна превышать скорость света в вакууме.
    Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время. Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие заряженные частицы, т. е. взаимодействие передается через “посредника” — электромагнитное поле. Скорость распространения электромагнитного поля равна скорости света в пустоте — примерно 300 000 км/с. Это и составляет сущность новой концепции — концепции близкодействия, которая распространяется не только на электромагнитное, но и на другие виды взаимодействий.
    Основные характеристики колебательных и волновых процессов. Типы колебаний и волн. Резонанс.
    Источник колебания волн – колебательные системы, в них возбуждаются колебания и они их распространяют в окружающее пространство. Колебание – периодически повторяющиеся движения или изменения. V=1/T – частота. Амплитуда – макс.. отклонение от положения равновесия. Фаза колебаний – это некоторая хар-ка, которая определяет, с какого момента времени мы рассматриваем колебание. Колебания содержат в себе запас энергии (кинетической и потенциальной). Потенциальная энергия характеризует отклонение тела от положения равновесия или нейтрального положения.
    Классификация колебаний:
    по природе колебания
    механические (период перемещения тел, изменения его формы и объема)
    электрические (колебания зарядов или токов)
    упругие !
    поверхностные (на поверхности раздела вода-воздух) ->гравитационные (т.к. вызваны притяжением Земли)
    по характеру колебаний любой природы
    гармонические (=идеальные) Не сущ. В природе.
    Затухающие (прекращ. С течением времени
    вынужденные (они происходят под действием периодической внешней силы)
    параметрические (периодически меняют св-ва колебательной системы)
    автоколебания (часы, человеческое сердце, работа радиопередатчика)
    линейные (относительно малой амплитуды)
    нелинейные (не сущ. общей теории о них) = реальные колебания
    Вынужденные колебания
    Резонанс – это явление сильного увеличения амплитуды вынужденных колебаний, когда частота внешней вынуждающей силой становится равной собственной частоте колебательной системы. При резонанса вынуждающая сила в течение всего периода колебания направлена в ту же сторону, что и вектор скорости колеблющегося тела. Поэтому она все время совершает положительную работу, увеличивая амплитуду колебаний тела. При несовпадении частоты вынуждающей силы и собственной частоты колебаний тела в течение одной части периода сила совершает положительную работу, увеличивая энергию тела, а в течение другой части периода та же сила совершает отрицательную работу, уменьшая энергию тела. При отсутствии трения и сопротивления воздуха амплитуда колебаний могла бы возрастать неограниченно, но в реальных условиях амплитуда установившихся колебаний определяется равенством потерь энергии и работы вынуждающей силы за период колебаний. Чем меньше будет трение и сопротивление, тем ярче будет выражен резонанс.
    Волны – это колебания, которые распространяются в пространстве. Они бывают бегущими и стоячими. Передаются от одной точки к другой. Длина волны – это расстояние, на которое распростран. Колебание за ее 1 период, зависит от характера самих колебаний и от св-в среды. Скорость распространения волны бывает фазовая и групповая (та скоторость, с которой передается энергия с волной от одной точки к другой. Поляризация волн – это соотношение между двумя направлениями: в котором происходят колебания в волне и направлением распространения волны. Продольные волны – эти два направления совпадают (звуковые). Поперечные волны – колебания происходят перпендикулярно направлению распространения волны (свет). Смешанные волны = продольные и поперечные. Волновое поле – это обл. пространства, в котором распространяются волны. Фазовая (волновая) поверхность – это поверхность, на которой колеб. движения волны имеют одну и ту же фазу. Расстояние между соседними волновыми поверхностями, у которых фазы различаются на 2п – длина волны.
    Интерференция волн (когерентные) – это результат положения или суперпозиции когерентных волн (у них разность фаз остается const с течением времени, их условие – одинаковость частот).
    При подготовке этой работы были использованы материалы с сайта

  5. 5
    Текст добавил: Диванный Блогер

    IВВЕДЕНИЕ
    Однажды, я задал вопрос маме, почему она всегда дает нам деревянные ложки, когда мы садимся кушать. Она ответила, что деревянные нагреваются медленнее, чем железные и ими не обожжешься.  Я задумался, ведь я замечал, что металлические предметы очень быстро нагреваются, а вот почему? Оказалось, что у всех твердых материалов есть такое свойство, называется – теплопроводность. Мне стало интереснокакие материалы проводят тепло быстрее, а какие медленнее, и что случится если увеличить температуру нагрева, будут ли эти материалы нагреваться в таком же порядке?
    Гипотеза: я думаю, что  разные материалы имеют разную теплопроводность и что с увеличением температуры нагрева, они будут нагреваться в том же порядке.
    Объект: теплопроводность.
    Предмет: теплопроводность некоторых материалов.
    Цель: Определить, почему по-разному нагреваются различные предметы, притом, что они нагревались в одинаковых условиях, но были изготовлены из разных материалов.
    Задачи:
    1) изучить литературу и материалы интернета по вопросу теплопроводности материалов;
    2) провести опыт, с целью определения, теплопроводности материалов;
    3) познакомить одноклассников с изученной темой.
    Для реализации данных задач и подтверждения гипотезы :
    Подберу  научную литературу по по вопросу теплопроводности материалов;
    Изучу данную литературу и сделаю  выводы;
    Для подтверждения теоритических выводов проведу  зксперемент;
    По результатам эксперимента сделаю выводы;
    С результатами данных выводов познакомлю одноклассников
    II ОСНОВНАЯ ЧАСТЬ
    2.1 Что такое теплопроводность?
    Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д.
    Ответить на вопрос, что такое теплота, удалось не сразу. Лишь в XVIII веке стало ясно, что все тела состоят из молекул, что молекулы движутся и взаимодействуют друг с другом. Тогда ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении — уменьшается.
    Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. Из примера ясно, что тепло может передаваться от тела более нагретого к телу менее нагретому.
    Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.
    Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).
    1. Снег — пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.
    2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из  материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.
    3. Вещества с хорошей  теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.
    2.1 Проведение эксперимента
    Для проведения эксперимента мне понадобилось: стеклянная миска,  деревянная, металлическая и пластмассовая ложка, стеклянная трубка,  пластилин, фишки, маргарин, секундомер, лист для записи результатов и ручка.
    Приготовив все необходимые материалы я приступил к проведению опыта. Я установил ложки и стеклянную трубку вертикально в миску и прикрепил их с помощью пластилина к краям миски. Затем с помощью одинаковых кубиков маргарина я прикрепил фишки к каждому предмету. Далее заполнил миску теплой водой и включил секундомер. Я рассчитывал провести опыт с теплой водой, а затем с кипятком.
    После того, как прошло 10 минут, а не одна фишка не сдвинулась с места, я решил, что температура воды недостаточная, для того, чтобы растопить маргарин.
    Я слил теплую воду и аккуратно залил кипяток, включил секундомер. Далее я записал, в какой последовательности соскальзывали фишки с предметов:
    металлическая ложка – 52 секунды;
    стеклянная трубка – 4 минуты 13 секунд;
    пластмассовая ложка – 5 минут 7 секунд;
    деревянная ложка – 6 минут 18 секунд.
    Хочу добавить, что когда соскользнула фишка с металлической ложки, через две минуты я добавил еще кипятка, потому, что маргарин под остальными фишками не таял.
    Таким образом, я выяснил, что лучшим проводником тепла является металл, а хуже всех выбранных материалов тепло проводит деревянные предметы. Это значит, что металл имеет высокую теплопроводность, он быстро нагревается и быстро остывает, а дерево наоборот имеет низкую теплопроводность, медленно нагревается и медленно остывает.  Еще, я заметил, металлическая ложка нагрелась меньше, чем за минуту, другие предметы нагревались гораздо дольше, это значит, что металл проводит тепло очень быстро, в отличии от пластмасса, стекла и дерева.
    III ЗАКЛЮЧЕНИЕ
    Таким образом, в результате проведенной работы я выяснил, что теплопроводность это свойство твердых материалов, которое позволяет оценить, как быстро нагревается и остывает тот или иной материал.
    В результате проведения опыта было установлено, что самая высокая теплопроводность у металлических предметов, затем у стекла, далее упластмасса и самой маленькой теплопроводностью обладает дерево.
    Гипотезу удалось проверить частично, так как температура теплой воды была мала и первую часть опыта провести не удалось. Однако во второй части опыта мы подтвердили гипотезу  – разные материалы имеют разную теплопроводность.
    IV СПИСОК ЛИТЕРАТУРЫ
    1.  А. В. Перышкин, Учебник физики – М.: Дрофа, 2010г, – с.11-14
    2.  Материалы сайта http://class-fizika.narod.ru/8_3.htm
    3.  Материалы сайта http://elementy.ru/trefil/21095
    4.  Материалы сайта http://www.fizika.ru/kniga/index.ph
    5.  Материалы сайта http://class-fizika.spb.ru/index.php/opit/726-op-teplpr

  6. При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.
    Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.
    Теплопроводность, как уже было сказано выше — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.
    Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).
    На первый взгляд формула кажется пугающей, но на самом деле все просто.
    Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.
    Запутались еще сильнее? Тогда по порядку.
    Разберем каждый элемент этой формулы более подробно.
    Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.
    Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.
    Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.
    Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
    непосредственном контакте.

    Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.
    Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.
    Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.
    Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.
    Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).
    В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.
    С первым понятием разобрались, посмотрим, что же дальше.
    Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.
    Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.
    Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.
    Различают два вида конвекции: естественная и вынужденная.
    Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.
    Переходим к следующей составляющей: излучение (лучистый теплообмен).
    Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.
    Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.
    Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.
    Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.
    Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.
    С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.
    Итак, вернемся к теплопроводности.
    Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:
    твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
    газообразной фазы – теплопроводность газа, который находится в ячейках.
    Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.
    Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.
    Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.
    Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.
    Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.
    В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.
    Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».
    Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.
    Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.
    Итоговую формулу теплопроводности PIR можно записать в виде:
    Подведем итог.
    Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.
    Источник: http://www.nappan.ru/press/news/Teploprovodnost_Prosto_o_slozhnom/

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *